Judaism, History of Science and Religion, Modern Period

views updated

Judaism, History of Science and Religion, Modern Period

Moses Maimonides (11351204) wrote at the beginning of his comprehensive code of Jewish law, the Mishneh Torah, that the most fundamental commandment in Judaism is to believe in the creator deity, that no one can believe in the creator who does not understand creation, and to understand creation requires knowledge of the sciences, especially physics and astronomy. All medieval rabbis agreed that the proper worship of God involves commandments to do what is good and to believe what is true, and many of them agreed with Maimonides that scientific knowledge was a critical way to fulfill this religious obligation.

The early modern period (sixteenth to early nineteenth centuries)

As is clear from the example of religious scientists such as the astronomer Levi Ben Gershom (Gersonides, 12881344), Jews followed Maimonides's directives and made first-rate contributions to the advancement of scientific knowledge in the late middle ages. However, this consensus on the symbiosis of religion and science disappeared by the early modern period in European civilization. The level of Jewish studies in the sciences as of the middle of the fourteenth century was the peak of this development. Jews continued to study science, but there was little growth. While the level of Jewish achievements in the field of medicine remained high by comparison with the level of medical sciences in Christian Europe, the same cannot be said for the other sciences, even in the case of astronomy and physics.

From the sixteenth through the early nineteenth centuries the focus of Jewish spiritual practice turned away from natural philosophy (from science) towards a concentration on Jewish law (Halachah ) and mysticism (Kabbalah ). Still, there were many Jews who continued the Maimonidean tradition of scientific inquiry, especially in astronomy. Among their notable tractates were Judah Loew ben Bezalel's Torat ha-Olah (Prague, 1569), Mordecai ben Abraham Jaffe's Levush's Or Yekarot (Lubin, 1594), David Gans's Nechmad ve-Na'im (1613), Joseph Solomon Delmedigo's Elim (Amsterdam, 1629), Tobias Cohen's Ma'aseh Turiyyah (Venice, 1707/8), Jonathan ben Joseph from Ruchim's Yeshu'ah be-Yisrael (Frankfurt 1720), Raphael ha-Levi of Hannover's Tekhumat ha-Shamayim (Amsterdam, 1756), Israel ben Moses ha-Levi of Zamosc's Netzach Yisrael (Frankfurt am Oder, 1741), and Israel David ben Mordecai JaffeMargoliot's Chazon Mo'ed (Pressburg, 1843).

In general, by the second half of the sixteenth century Jewish students of astronomy were familiar with Copernicus's heliocentric theory. However, their attitudes to it were no more enlightened than that of the Roman Catholic Church, for in general all of these books were written as an apologetic defense of Maimonides's Aristotelian geocentric theory.

What happened that so dramatically altered the status of scientific learning in traditional Jewish communities between the twelfth and the sixteenth centuries? This is a question that scholars continue to debate. Critical factors include the increase of Jewish persecution in Christian Europe, which is conjoined to the increase of interest in Kabbalah and the decline of interest in the kind of natural philosophy that would develop into modern science.

The dramatic focus of this competition between legal studies, Kabbalah, and philosophic/scientific studies to win the hearts of intelligent Jews was the so-called "Maimonidean Controversies" that began in Europe during Maimonides's own lifetime, broke out again in Provence between 1230 and 1232, and spread from Provence into Christian Spain between 1300 and 1306. One of the important consequences of these controversies occurred in fifteenth-century Spain, where the curriculum of Jewish studies was revised to intensify the emphasis on law and all but eliminate the sciences as something identifiably "Jewish." (The critical exception to this generalization was the study of medicine and, as part of medicine, the study of what would become chemistry.) Whatever the causes, Jews who identified themselves primarily as Jews, as opposed to as members of a particular nation state, ceased to make any significant contributions to science. The same can also be said of Jews as human beings. However, this situation changed dramatically in the second half of the nineteenth century.

The modern period (late nineteenth and twentieth centuries)

When the philosopher Baruch Spinoza (16321677) was offered a professorship at the University of Heidelberg, he became, as far as we know, the first Jew ever to be offered a teaching position in a Christian European university. However, this was not a proper beginning, for Spinoza was a Dutch Jew who, as such, represented a most atypical Jewish community that had only recently emerged from its secret Jewish life as conversos in Spain. Moreover, Spinoza was a heretic. That a Jew could enter a Christian university if he left Judaism and became a Christian was not uncommon. However, Spinoza did not become a believing Christian even though he ceased to be a believing Jew. In the end, Spinoza did not accept the position in Heidelberg, and his thought had no significant impact on Jews until the late nineteenth century.

Excluding Spinoza, the first Jew to complete a doctorate in a Christian university was Joseph ben Judah Chamitz, who earned a degree in philosophy and medicine from the University of Padua in 1624. Other Jews followed his example throughout western Europe after Joseph II of Austria issued his Edit of Toleration in 1782, after the Jews were emancipated in France in 1791, and after the Congress of Vienna created an union of German states to replace the Holy Roman Empire in 1815 and Italy was unified in 1861. The Jews were emancipated in Switzerland in 1866 and in Austria-Hungary in 1867. The Franco-Prussian War of 1870 to 1871 resulted in William I of Prussia becoming emperor of all the German states, and Germany became unified in 1871 under Otto von Bismarck. Two other, related critical events occurred in 1871: the new German constitution gave full rights to Jews, and the term anti-Semitism was used for the first time. The former event opened the doors to Jews throughout Germany, and from Germany throughout the Western world, from the late nineteenth through the early twentieth centuries. The latter event closed the doors of the university, culminating in the Nazi German attempt to "eliminate" Jews altogether.

The achievements of Jews as individuals (as citizens of their nation states and not especially as Jews) from the late nineteenth through the early twentieth centuries are impressive. By 1910, 2.5 percent of all full professors in Germany were Jewish, and 7.5 percent of all German students and 9.4 percent of all students (including foreigners) at Prussian universities were Jewish. Furthermore, by 1933 Jews constituted thirty percent of academic staff in natural sciences, over forty percent in medical faculties, and almost fifty percent of the mathematicians in German universities.

In general, the achievements of Jews as individuals in every academic field are even more dramatic. The originality that Jews failed to achieve in the early modern period was more than compensated for in late modern times. Notable Jewish astronomers include Hermann Goldschmidt (18021866, in France) who from 1852 to 1861 discovered fourteen asteroids between mars and Jupiter; Maurice Loewy (18571938, in Austria) who invented the Coudé telescope at the Paris Observatory; and Richard Prager (18831945, in Germany) who made major discoveries about variable stars at Berlin. In the United States, Frank Schlesinger (18711943) devised photographic methods for making parallax-determinations; Martin Schwarzchild (1912-1997) researched stellar evolution and designed satellite-born telescopes at Princeton University in New Jersey; and Herbert A. Friedman (19162000) studied outer-space spectroscopy at the U. S. Naval Research Laboratory in Washington, D.C.

Jewish involvement in chemistry was a natural outgrowth of earlier Jewish interest in medicine. In this respect it is notable that between 1905 and 2000 twenty-two Jews received the Nobel Prize in chemistry: Adolph Von Baeyer (1905), Henri Moissan (1906), Otto Wallach (1910), Richard Will-staetter (1915), Fritz Haber (1918), George Charles de Hevesy (1943), Melvin Calvin (1961), Max Ferdinand Perutz (1962), William Howard Stein (1972), Ilya Prigogine (1977), Herbert Charles Brown (1979), Paul Berg (1980), Walter Gilbert (1980), Ronald Hoffmann (1981), Aaron Klug (1982), Albert A. Hauptman (1985), Jerome Karle (1985), Dudley R. Herschbach (1986), Robert Huber (1988), Sidney Altman (1989), Rudolph Marcus (1992), and Alan J. Heeger (2000).

Jews even excelled in physics, which had ceased to be part of the Jewish curriculum in the early modern period. For example, during the twentieth century, Jews received thirty one Nobel prizes in physics: Albert Abraham Michelson (1907), Gabriel Lippmann (1908), Albert Einstein (1921), Niels Bohr (1922), James Franck (1925), Gustav Hertz (1925), Gustav Stern (1943), Isidor Issac Rabi (1944), Felix Bloch (1952), Max Born (1954), Igor Tamm (1958), Emilio Segre (1959), Donald A. Glaser (1960), Robert Hofstadter (1961), Lev Davidovich Landau (1962), Richard Phillips Feynman (1965), Julian Schwinger (1965), Murray Gell-Mann (1969), Dennis Gabor (1971), Brian David Josephson (1973), Benjamin Mottleson (1975), Burton Richter (1976), Arno Allan Penzias (1978), Peter L Kapitza (1978), Stephen Weinberg (1979), Sheldon Glashow (1979), Leon Lederman (1988), Melvin Schwartz (1988), Jack Steinberger (1988), Jerome Friedman (1990), and Martin Perl (1995).

The works of these physicists include: the perfection of the electromagnetic theory of radiation; quantum theory and its experimental confirmation; relativity concepts and their universal impact; atomic structure and its implication for electronics; and nuclear physics with its applications and implications for the study of high energy particles. Of these Jewish physicists, the most famous is Albert Einstein (18791955), who is especially known for his work on relativity theory. Many of the mathematicians who provided the foundation for Einstein's contributions to physics were also Jews. Of special note were Karl Gustav Jacob Jacobi (18041851) for his work on elliptic functions, Herman Minkowski (18641909) for his work on four dimensional space, and Tullio Levi-Civitá (18731941) for fundamental mathematics of relativity theory.

The least surprising area of Jewish excellence in science was medicine, since this was the one scientific subject Jews continued to study into the modern period in their traditional Jewish community schools. It is the area of scientific research whose application to Judaism is most evident, since it raises any number of questions concerning morality and Jewish law. For example, what is the role of sex in marriage independent of reproduction? Under Jewish law are any of the modern methods of treating infertility (including cloning, artificial insemination, and the use of surrogate mothers) permissible? The same questions apply to applications of genetic engineering and screening. Conversely, are any of the ways of preventing pregnancy (especially contraception, sterilization, and abortion) permissible? Furthermore, as modern science impacts on Jewish law and ethics with respect to life, it has implications for ways of dying, including questions about assisted suicide, cremation, autopsies, and organ donations. Finally, modern medicine raises questions for social ethics, from issues about a fair distribution of health care to issues about cosmetics (tattooing, body piercing, and cosmetic surgery).

By the middle of the seventeenth century European medical schools (notably in Germany, Poland, and Russia) began to admit Jews. One of the first was the University of Frankfurt on the Oder in Germany. One of its first students was Tobias ben Moses Cohen of Metz. Although he did not complete his studies there, he received his M.D. degree later from the University of Padua. Eventually he became a court physician to five successive sultans in Constantinople. Among the notable Jewish physicians of the eighteenth century were Marcus Eliezer Bloch in Berlin and Gumpertz Levison in England and Sweden, as well as Elias Henschel, who was a pioneer of modern obstetrics.

Jewish involvement in medical practice and research grew exponentially after the 1782 Edit of Tolerance in Austria. Still Jews tended to be held back, rarely rising academically beyond the titular professorial position of privatdocent. Jews tended to prefer new fields that were less attractive to non-Jewish competitors. An example is the pioneering work of Moritz Kaposi, Isador Neumann, and Heinrich Auspits in dermatology-venereology in Austria. In Germany dermatology came to be known as Judenhaut ( Jews' skin). German specialists in this study included Paul Unna, Oskar Lassar, and Josef Jadassohn, and in Switzerland, Bruno Bloch.

Jews tended to dominate biochemistry, immunology, psychiatry, heatology, histology, and microscopic pathology. Among the leaders of microscopy were Ludwig Traube; of neuropathology is Moritz Romberg; and of neurology were Leopold Auerbach, Ludwig Edinger, and Hermann Oppenheim. In the twentieth century Jews entered freely into all fields of medicine and made major contributions to them, especially chemotherapy, immunology, hematology, heart disease research, lung and kidney disease research, gastroenterology, dermatology, pediatrics, surgery, obstetrics, gynecology, radiology, pathology, public health, and medical education.

In this respect it is notable that between 1908 and 1995, forty-four Jews received the Nobel Prize in medicine: Elie Metchnikoff (1908), Paul Erlich (1908), Robert Barany (1914), Otto Meyerhof (1922), Karl Landsteiner (1930), Otto Warburg (1931), Otto Loewi (1936), Joseph Erlanger (1944), Herbert Spencer Gasser (1944), Ernst Boris Chain (1945), Hermann Joseph Muller (1946), Tadeus Reichstein (1950), Selman Abraham Waksman (1952), Hans Krebs (1953), Fritz Albert Lipmann (1953), Joshua Lederberg (1958), Arthur Kornberg (1959), Konrad Bloch (1964), Francois Jacob (1965), Andre Lewoff (1965), George Wald (1967), Marshall W. Nirenberg (1968), Salvador Luria (1969), Julius Axelrod (1970), Sir Bernard Katz (1970), Gerald Maurice Edelman (1972), David Baltimore (1975), Howard Martin Temin (1975), Baruch S. Blumberg (1976), Rosalyn Sussman Yalow (1977), Daniel Nathans (1978), Baruj Benacerraf (1980), Cesar Milstein (1984), Michael Stuart Brown (1985), Joseph L. Goldstein (1985), Stanley Cohen [& Rita Levi Montalcini] (1986), Gertrude Elion (1988), Harold Varmus (1989), Erwin Neher (1991), Bert Sakmann (1991), Richard J. Roberts (1993), Phillip Sharp (1993), Alfred Gilman (1994), and Edward B. Lewis (1995)

Of special importance within the discipline of medicine is psychology, within psychology is psychiatry, and within psychiatry is the work of Sigmund Freud (18561939) and his followers in psychoanalysis. As psychology emerged at the end of the nineteenth century, there were few Jews involved, G. F. Heymans at Louvain in Belgium being a notable exception. Modern psychiatry began with the work of Phillipe Pinel in France after the French revolution. The first Jewish psychiatrists to join this movement were Cesare Lombroso and Hippolyte Bernheim. Freud's own study began as an observer of Bernheim's work with hypnosis on mental patients. Freud published Interpretation of Dreams in 1900. Those initially associated with psychoanalysis in Freud's "inner circle" included the Jews Sandor Ferenczi, Karl Abraham, Max Eitingon, Otto Rank, and Hans Sachs. Most notable among those who followed Freud were Alfred Adler, Hans Sachs, Paul Federn, Theodor Reik, Helene Deutsch, Melanie Klein, and Freud's daughter Anna. Leading psychiatrists in the United States included Erik Homberber Erikson, Margarert Mahler, Leo Kanner, Lauretta Bender, Moritz Tramer, Paul Schilder, Beata Rank, and Rene Spitz.

Jewish science

One must be careful to distinguish the role of Jews in modern science as individuals from their role as Jews. Jews have been scientists in the modern period not as members of a Jewish community (as they were in the Middle Ages) but as free citizens in secular nation states. The schools where they studied, did research, published, and taught were sponsored by the secular state and not by any agency of the Jewish community. Is it legitimate to ask about these Jews whether or not their being Jewish in any way contributed to their science? Those most likely to give an affirmative answer to this question would be anti-Semites, especially those who dominated German culture in the 1930s and 1940s. Certainly most of these scientists themselves would make a sharp distinction between who they are as Jews (if anything) and who they are as scientists.

The most obvious names that people associate with Jews are Baruch Spinoza, Karl Marx, Henri Bergson, Albert Einstein, and Sigmund Freud. All five would have strongly denied that their Jewish ethnic identity had any bearing on their contributions to science. Spinoza was a product of a converso community, and furthermore, he was excommunicated; the excommunication did not seem to matter much to him, for he could live as easily among his Christian friends as he had lived in a Jewish community. Karl Heinrich Marx (18181883) can hardly be called Jewish at all. His father converted with his children to Christianity in 1824 (when Karl six years old). The case is almost the same with Henri Louis Bergson (18591941). He was raised in Paris by a father from Warsaw and mother from England, and Henri himself did the best that he could to conceal his upbringing, including the fact that he was Jewish.

There are many other Jews who could be listed in the category of those whose Jewish identity, even on cultural terms, was so tenuous that to call them "Jewish" is seriously misleading. Notable in this category are the sociologist Emile Durkheim (18591917) and the philosopher Edmund Husserl (18591938). Others include Karl Gustav Jacob Jacobi (18011851), who developed the generalization of Hamilton's theory in mechanics, and Georg Cantor (18451910), who made major contributions to the theory of the functions of real numbers. Felix Klein (18491925), who in 1882 published a paper on Riemann's theory of algebraic functions, developed the Erlangen program. which classified geometries in mathematical group theory. Ferdinand Cohn (18281898) identified several bacteria as agents of disease. Eugen Goldstein (18501930), together with Cromwell Varley (18281883), developed the leading hypothesis (waive interpretation) of the nature of cathode radiation. Finally, Paul Ehrlich (18541915) created chemotherapy.

The only notable modern Jewish scientist who understood his major work to be specifically Jewish was Hermann Cohen (18481918). Cohen is known primarily as a leading German philosopher of the neo-Kantian Marburg School and as a theologian of Reform Judaism. However, his career began as a philosopher of mathematics with the 1883 publication of his Das Prinzip der infinitesimal methode und seine Geschichte (The Principle of the infinitesimal method and its History), in which he developed an account of the meaning of differentiation and integration in calculus that served later as the foundation of his Marburg philosophy and his liberal Jewish theology. Cohen's colleague Paul Natorp (18541924) and his first pupil Ernst Cassirer (18741945) were both distinguished Jewish philosophers in the first half of the twentieth century. Both were oppressed for being Jewish and both shared the widespread view, in opposition to Hermann Cohen, that their Jewish identity was a sheer accident, of no relevance to their work as intellectuals.

The most interesting scientist in this respect was Albert Einstein (18791955). Jewishness played an important part in his life in terms of secular politics because he was a lifelong Zionist who was offered the first presidency of the modern secular state of Israel. Similarly, religious belief of some sort seemed to play a role in his speculations as a scientist. However, the role of religion in his life was always a private form of religiosity that he consciously dissociated from any traditional or conservative form of historical rabbinic Judaism. To the extent that Einstein was religious it was more like the religion of Spinoza, whose work he first read in 1920, when he was already forty-one years old.

The religion of Einstein was a religion that identified the highest form of divine worship with the uncompromising pursuit of the truth about the universe in general. Einstein identified this religious quest with Spinoza, who arrived at his distinctive conception of science as worship through his study of the Jewish philosophy of Maimonides. So we end where we beganwith a symbiosis of science and religion, one that was clearly Jewish and religious in the medieval period and became increasingly universalist and secular in the modern period.

See also Einstein, Albert; Judaism; Judaism, Contemporary Issues in Science and Religion; Judaism, History of Science and Religion, Medieval Period; Maimonides


bleach, j. david. bioethical dilemmas: a jewish perspective. hoboken n.j.: ktav, 1998.

dorff, elliot n. matters of life and death: a jewish approach to modern medical ethics. philadelphia: jewish publication society of america, 1998.

jammer, max. einstein and religion. princeton, n.j.: princeton university press, 1999.

kaku, michio, and trainer, jennifer. beyond einstein: the cosmic quest for the theory of the universe. new york: bantam, 1987.

poma, andrea. the critical philosophy of hermann cohen. albany: state university of new york press, 1997.

robertson, ritchie. the "jewish question" in german literature: 17491939. oxford: oxford university press, 2001.

ruderman, david b. jewish thought and scientific discover in early modern europe. new haven, conn., and london: yale university press, 1995.

volkov, shulamit. "jewish scientists in imperial germany (parts i and ii)." aleph: historical studies in science and judaism 1 (2000): 215281.

yerushalmi, yosef hayim. freud's moses: judaism terminable and interminable. new haven, conn.: yale university press, 1991.

norbert m. samuelson

About this article

Judaism, History of Science and Religion, Modern Period

Updated About encyclopedia.com content Print Article