Skip to main content

Bond energy

Bond energy


Bond energy is the strength of a chemical bond between atoms, expressed as the amount of energy required to break it apart. It is as if the bonded

Table 1. Typical Bond Energies. (Thomson Gale. )
Typical bond energies
Type of bond or attraction Range of bond energies, kJ/mol
Ionic bonds7004000
Covalent triple bonds8001000
Covalent double bonds500700
Covalent single bonds200500
Dipole attractions between molecules40400
Hydrogen bonds1040
Table 2. Average Bond Energies of Common Bonds. (Thomson Gale. )
Average bond energies of common bonds
Bond Bond energies, kJ/mol

atoms were glued together: the stronger the glue is, the more energy would be needed to break them apart. A higher bond energy, therefore, means a stronger bond.

Bond energies are usually expressed in kilojoules per mole (kJ/mol): the number of kilojoules of energy that it would take to break apart exactly one mole of those bonds. There are several kinds of glues, or attractions, by which atoms and molecules can stick together. Depending upon the type of attractive force, the bond energy can vary in strength. For example, an ionic bond, which is a simple interaction between a positively-charged group and a negatively-charged group, is stronger than a type of bond called a covalent bond, which involves the sharing of electron between the atoms participating in the bond. Among covalent bonds, triple bonds, which involve the sharing of three electrons, are stronger than double bonds and double bonds are stronger than single bonds. Hydrogen


Kilojoule An amount of energy equal to a thousand joules. One kilojoule is equivalent to 0.239 kilocalorie. In electrical terms, a kilojoule is the amount of energy used by one kilowatt of power operating for one second.

bonds are weakest of all these bonds. However, in a molecule there can be many individual hydrogen bonds, so their total strength can be considerable. Hydrogen bonds play an important role in determining the properties of important compounds such as proteins and water.

See also Dipole.

Robert L. Wolke

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Bond energy." The Gale Encyclopedia of Science. . 17 Mar. 2018 <>.

"Bond energy." The Gale Encyclopedia of Science. . (March 17, 2018).

"Bond energy." The Gale Encyclopedia of Science. . Retrieved March 17, 2018 from

Learn more about citation styles

Citation styles gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, cannot guarantee each citation it generates. Therefore, it’s best to use citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

The Chicago Manual of Style

American Psychological Association

  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.