Skip to main content

Time Zones

Time zones

Earth rotates on its polar axis once every 23.9345 hrs. As an oblate sphere measuring a circumferential 360°, Earth rotates through almost 15 angular degrees per hour.

Local noon occurs when, on the hypothetical celestial sphere, the Sun is at the highest point during its daily skyward arch from east to west. When the Sun is at its zenith on the celestial meridian, this is termed local noon. In the extreme, every line of longitude, or fraction thereof, has a different local noon. In practice, however, because of Earth's angular rotation rate, it is more convenient to create a system of 24 time zoneseach spanning 15 angular degrees. The central line of longitude in these zones establishes the local noon for individual time zones.

Earth's lines of longitude (meridians) are great circles that meet at the north and south polar axis. They are referenced by an east or west displacement from the prime meridian. Accordingly, lines of longitude range from 0° E to 180° E and 0° W to 180° W. Degrees are further divided into arcminutes and arcseconds.

The prime meridian runs through Greenwich, England and the line of longitude displaced 180° E and 180° W from the prime meridian is termed the international dateline. The international dateline generally runs through sparsely islanded areas of the Pacific Ocean.

With regard to the solar meridian, the Sun's location (and reference to local noon) is described in terms of being ante meridian a.m.) or post meridian (p.m.).

Standard meridians occur every 15° of longitudinal displacement from the prime meridian (e.g., 15° W, 30° W, 45° W, etc.) The standard meridians also establish the local noon for the time zone and, therefore, each time zone is defined as being 7.5° longitudinal displacement both west and east of the standard meridian. Accordingly, dividing the standard meridian by 15 yields the time correction for that time zone. For example, the standard meridian of 90° W runs near both Chicago and New Orleans. These sites are in the Central Time Zone of the United States (CST; Central Standard Time). To obtain the proper correction from Greenwich Mean Time (GMT)also termed Universal Time (UT or UTC)a division of 90° by 15° means that CST is six hours behind GMT. Accordingly, when it is noon 12:00 HRS GMT in London, it is 0600 HRS (6 a.m.) CST in Chicago or New Orleans. Because of Earth's rotation, displacements west are further designated with a negative sign. Accordingly, CST = GMT 6 hrs.

Additional North American meridians and time zones include standard meridian 60° W for Atlantic Standard Time (e.g., as for Puerto Rico); standard meridian 75° W for Eastern Standard Time (EST); standard meridian 105° W for Mountain Standard Time (MST); standard meridian 120° W for Pacific Standard Time (PST); standard meridian 135° W for Yukon Standard Time (YST); standard meridian 150° W for Hawaii-Alaska Standard Time (HAST) and standard meridian 165° W for Bering Standard time.

Movement east of the prime meridian results adding time to GMT. For example, Rome, Italy, at a latitude and longitude of 42° N, 12° E, is 3° W of the 15° E standard meridian. Because a time zone ranges 7.5° east and west of a standard meridian, the applicable standard meridian for Rome is the 15° E standard meridian. Accordingly, the time differential between Rome and London (GMT) is 15°/15° = 1interpreted as +1 hour time difference. Therefore, when it is noon in London, it is 1300 HRS, or 1 p.m., in Rome.

In reality, there are many local deviations of the time zone boundaries based upon geopolitical considerations (e.g., state and national boundaries). Actual time corrections are also influenced by whether or not a particular locality adopts daylight saving time shifts (usually one hour) to save energy by shifting daylight hours to clock hours more conductive to typical human work patterns. The United States shifts to Daylight Saving Time between April and October each year. Accordingly, time zone designations are changed from, for example, CST to CDST (Central Daylight Saving Time).

See also Cartography; Celestial sphere: The apparent movements of the Sun, Moon, planets, and stars; Solar illumination: Seasonal and diurnal patterns

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Time Zones." World of Earth Science. . 14 Nov. 2018 <>.

"Time Zones." World of Earth Science. . (November 14, 2018).

"Time Zones." World of Earth Science. . Retrieved November 14, 2018 from

Learn more about citation styles

Citation styles gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, cannot guarantee each citation it generates. Therefore, it’s best to use citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

The Chicago Manual of Style

American Psychological Association

  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.