Skip to main content


chlorate (klōr´āt, klôr´–) and perchlorate (pərklōr´āt, –klôr´–), salts of chloric acid, HClO3, and perchloric acid, HClO4, respectively.

Chloric Acid and Its Salts

Chloric acid, HClO3·7H2O, is a colorless substance that occurs only in solution. It is a strong acid and a strong oxidizing agent that decomposes if heated above 40°C. Under certain conditions it forms oxygen, water, and the explosive gas chlorine dioxide, ClO2; under other conditions it forms perchloric acid and hydrochloric acid.

Formation of Chlorates

A chlorate may be formed (together with the corresponding chloride) by heating the hypochlorite; e.g., 3Ca(ClO)2→Ca(ClO3)2+2CaCl2. This reaction takes place when chlorine gas is passed into a hot aqueous solution of a metal hydroxide; the hypochlorite is formed and decomposes almost immediately. Commercially, a chlorate is derived when a hot aqueous metal chloride solution is decomposed by electrolysis, forming chlorine gas at the anode and metal hydroxide at the cathode (with evolution of hydrogen); the chlorine reacts with the hydroxide to form the hypochlorite, which decomposes to form the chlorate.

Commercial Uses of Chlorates

The most industrially important chlorate is potassium chlorate, or chlorate of potash, KClO3; sodium chlorate, or chlorate of soda, NaClO3, is also used. Potassium chlorate is a colorless crystalline substance that melts at 356°C and decomposes violently at about 400°C. It is a powerful oxidizing agent and is used in making explosives and matches; a mixture of potassium chlorate with phosphorus, sulfur, or any of numerous organic compounds (e.g., charcoal or sugar) explodes upon friction or percussion. When a chlorate is heated, oxygen is evolved, often explosively, and the chloride is formed; e.g., 2KClO3→2KCl+3O2. The reaction proceeds controllably at lower temperatures if a catalyst, e.g., manganese dioxide, is used; this provides a convenient source of oxygen. If the chlorate is heated carefully at a lower temperature so that no oxygen is given off, the perchlorate and chloride are formed; e.g., 4KClO3→3KClO4+KCl.

Perchloric Acid and Its Salts

Perchloric acid, HClO4, is a volatile, unstable, colorless liquid that is a strong, corrosive acid and a powerful oxidizing agent, especially when hot. It explodes if heated to about 90°C or on contact with combustible materials. The monohydrate, HClO4·H2O, is fairly stable and forms needlelike crystals that melt at 50°C. It explodes if heated to 110°C. The dihydrate, HClO4·2H2O, is a stable liquid that boils at 200°C.

Formation of Perchlorates

Perchloric anhydride, or chlorine heptoxide, Cl2O7, is a colorless, oily liquid that boils at 82°C without exploding but that may be detonated by shock; it can be prepared by adding phosphorus pentoxide to cold perchloric acid. The perchlorate free radical (chlorine tetroxide, ClO4) can be prepared by adding bromine to silver perchlorate; it is extremely reactive and unstable.

Commercial Uses of Perchlorates

Perchlorates are safer to handle than chlorates; they are more stable when exposed to heat or shock. Potassium perchlorate, KClO4, is perhaps most widely used, e.g., in matches, fireworks, and explosives. It is a colorless crystalline substance that melts at about 610°C.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"chlorate." The Columbia Encyclopedia, 6th ed.. . 19 Jan. 2019 <>.

"chlorate." The Columbia Encyclopedia, 6th ed.. . (January 19, 2019).

"chlorate." The Columbia Encyclopedia, 6th ed.. . Retrieved January 19, 2019 from

Learn more about citation styles

Citation styles gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, cannot guarantee each citation it generates. Therefore, it’s best to use citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

The Chicago Manual of Style

American Psychological Association

  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.