Antelopes, Cattle, Bison, Buffaloes, Goats, and Sheep (Bovidae)

views updated

Antelopes, cattle, bison, buffaloes, goats, and sheep

I: Kudus, Buffaloes, and Bison
II: Hartebeests, Wildebeests, Gemsboks, Oryx, and Reedbucks
III: Gazelles, Springboks, and Saiga Antelopes
IV: Dikdiks, Beiras, Grysboks, and Steenboks
V: Duikers
VI: Sheep, Goats, and Relatives


Class Mammalia

Order Artiodactyla

Suborder Ruminantia

Family Bovidae

Number of genera, species
46–47 genera, 137–138 species

Evolution and systematics

The Bovidae are the largest family within the Artiodactyla (even-toed ungulates) and are comprised of six subfamilies, which include antelopes, cattle, duikers, gazelles, goats, and sheep. Their common characteristic is their unbranched, non-deciduous horns. The high frequency of convergent evolution within these animals suggests that this might not be a monophyletic group.

Based on tooth characteristics, some scientists suggest that the first Bovidae can be recognized from the late Oligocene. However, most agree that members of this family first appear in the fossil record during the Miocene, after which they rapidly diversified and became widely distributed. This rapid diversification during the Miocene, which resulted in all extant lineages being present by 16–17 million years ago, is supported by estimates based on molecular genetic evidence. Largely as a result of their rapid diversification, the phylogenetic relationships within the Bovidae are perhaps some of the most difficult to elucidate of all ungulates.

The earliest fossil attributed to the Bovidae is Eotragus, found in 18-million-year-old Miocene deposits from Pakistan. It is recognized as a bovid by its horn cores, and it also possessed high-crowned cheek teeth typical of modern members of this family. Boselaphines first appear in the middle Miocene of Africa and Europe, perhaps earlier in Pakistan, and in the late Miocene in China. The boselaphines probably gave rise to the Bovini towards the late Miocene. Also in the late Miocene, Gazella, probably originating from an ancestor similar to the African Homoiodorcas, became widely distributed throughout Eurasia, and around this same epoch, modern antelopes first appeared in Africa. The first Caprinae probably evolved from Tethytragus found in Europe, with the first fossil sheep, Oioceros, occurring in the late Miocene. Leptobos and Parabos are the first cattle and are found in early Pliocene deposits from about five million years ago, when the ovibovines also are first known.

The family Bovidae is comprised of six subfamilies (Antilopinae, Bovinae, Caprinae, Cephalophinae, Hippotraginae, and Neotraginae) with a total of 137 species in 46 genera (sometimes the subfamilies Aepycerotinae, Alcelaphinae, Peleinae, and Reduncinae are recognized). Not included in these totals are the short-horned water buffalo (Bubalus mephistopheles) from northeast China, which became extinct in the Shang Dynasty (1800–1200 b.c.), and the controversial "linh duong" (Pseudonovibos spiralis) from Vietnam and Cambodia. The validity of this latter animal is controversial because DNA evidence has suggested it is related to Antilopinae, to Bovinae, and to Caprinae, and one DNA analysis indicated

that the horns of at least some specimens had been made from domestic cattle horn. Some authors recognize Capricornis as the genus to which serow belong; in this case, there would be 47 genera within the Bovidae.

Physical characteristics

Shape, size, and color

Body shape of members of this family varies from relatively small, slender-limbed species such as the gazelles to the massive, stocky wild cattle. The forequarters are either larger than the hind, as in many large species like wild cattle, wildebeest, and tragelaphine antelopes, or the reverse, as in smaller species inhabiting dense tropical forests such as duikers (Cephalophinae).

Bovids encompass an extremely wide size range, starting with the diminutive dwarf antelopes (Neotragus), which weigh as little as 4.5 lb (2 kg) and stand 10–12 in (25–30 cm) at the shoulder, with a total body length of 22–24 in (55–62 cm), and ending with Asian water buffalo (Bubalus bubalis), which weigh as much as 2,600 lb (1,200 kg), and the wild cattle such as gaur (Bos gaurus), which are up to 85 in (220 cm) at the shoulder, and the yak (Bos grunniens), whose total length can reach 128 in (325 cm).

The variety of body coloration of bovids is also extensive, ranging from the predominantly white or very pale, creamy white seen in addax (Addax nasomaculatus) to the purple-black of adult male Indian gaur and the orange-yellow coat of golden takin (Budorcas taxicolor bedfordi). However, most bovids are some shade of brown. The body coloration can consist of a solid shade; in some, the belly is lighter, while in others, the pelage is patterned. In some species, the patterned coloration is for crypsis and camouflage, such as light stripes against a darker ground that help break the body outline. Such a pelage pattern is seen in the aptly named zebra duiker (Cephalophus zebra) and the sitatunga (Tragelaphus spekii). In others such as gemsbok (Oryx gazella), contrasting colors and body markings are used for intraspecific displays. The sexes often are differently colored, with males usually having the darker pelage. Frequently within species, there are also age-specific colorations. For example, for the first few weeks or months after birth, the pelage color of young is quite different from that of adults, such as in the orange-brown coat of young bison (Bison bison), which contrasts to the dark burnt-sienna brown of the adults. In species such as blackbuck (Antilope cervicapra) or sable antelope (Hippotragus niger), adult males are much darker colored than are subadult males and other age-sex classes.

Other distinguishing characteristics

One pair of unbranched horns characterize bovids, except for the unique chousingha (Tetracerus quadricornis) from India, also known as the four-horned antelope. All male bovids have horns, and so do females in several species, although they are almost always smaller. Whether females are horned or not seems to be depend on the degree of intraspecific resource competition, which will be relatively greater in species forming large groups. As Charles Darwin, and later others, argued, horns evolved primarily through sexual selection involving intraspecific competition, and are used for fighting and display purposes.

Horn shape varies greatly among the Bovidae, from short, sharply pointed horns of steenbok (Raphicerus campestris) to

the long, spirally twisted horns of tragelaphines to the relatively massive but simple curved horns of water buffalo. Horns are comprised of an inner bone core attached to the frontal bones of the skull, and an outer keratinized sheath, separated by two thin layers of tissue, the epidermis and the dermis. The inner bone core increases in size each year until maturity, when the growth slows or ceases. The outer horn sheath grows each year but is not shed, so the annual sheaths grow inside each other, forming a series of cones stacked one inside the other. The demarcation between each successive year's growth is distinct in some species such as wild sheep (Ovis), and forms a ring where one year's sheath stopped growing and the next began. Counting these annual rings can give a reliable estimate of the animal's age, but this technique does not work for all species, or sometimes not even for both sexes of the same species.

Bovids walk on the their hooves (unguligrade) and all have typical paraxonic limbs, in which two well-developed digits on both front and hind feet, the third and fourth digits, bear the weight of the body. The second and fifth digits are either absent or, more often, small, forming the so-called lateral hooves, or dewclaws. The third and fourth metapodials, the only ones completely present, are fused into a single functional unit sometimes referred to as the cannon bone. Keratinous hooves sheath the terminal bone of each toe. Other adaptations of the bovid limb include a reduction in size of the distal end of the ulna, which is also fused to the radius of the fore limb, and a similar reduction of the distal end of the fibula on the hind limb.

The bovid skull lacks a sagittal crest, and the orbits that form a complete circle with a postorbital bar at the rear are located at the sides and toward the top of the head. The lacrimal canals have a single opening within the orbit, and there are often pits or preorbital vacuities in front of the orbit. The dental formula is (I0/3 C0/1 P3/2−3 M3/3) × 2 = 30−32. All species lack both upper incisors and upper canines. The lower canines are usually incisiform (incisor-like), adding to the cropping function of these front teeth. Plants such as grasses and forbs (e.g., herbs and wildflowers) are brought into the mouth by the lips and tongue, where they are severed by the lower incisors pressing against the hard cartilaginous pad of the upper palate, followed by a quick upward jerk of the head. Tougher plants such as shoots of shrubs are severed by the premolars and molars. Depending on diet, the incisors can be wide (spatulate) and relatively uniform in size, as in grazers, or narrower and often of various sizes, as in browsers. There is a large, clearly defined gap (diastema) on the lower jaw between the canine and the first of the premolars. The structure of the premolars and molars depends on the dietary habits. In obligate grazers, they are almost

always high crowned (hypsodont), while in browsers, they are usually low crowned (brachydont). Some mixed grazer-browsers have mesodont molars. In all three types, the enamel of the molars and some premolars is folded into crescent-shaped (selenodont) loops and ridges, which are highly effective for grinding plant material into small particles to aid digestion.

All Bovidae are ruminants, having a four-chambered stomach, and regurgitate and re-chew their food (chew cud) as another means of increasing digestive efficiency.

Female Bovidae have either one or two pairs of functional mammae. Many species of bovids have glands that produce secretions used in intraspecific communication. They are especially common in many of the African antelopes, which use the secretions for marking territorial boundaries.


Current and historical ranges

As a result of human transport and introductions, both wild and domestic species of Bovidae are distributed worldwide, except for Antarctica. However, the family is native only to Africa, North America, Europe, and Asia.

For almost all species of Bovidae, their current range is generally similar to their historic range. However, most are not as numerous and many species have become increasingly confined to pockets, forming a more patchy distribution within their former range. The reductions in abundance and distribution are almost always due to human activities, which remove or reduce populations or which destroy or dramatically alter habitats. Many species throughout the world are now found only in protected areas such as national parks and game reserves. For example, North American plains bison (Bison bison) were found across the Great Plains from the western mountains to the eastern forests. They were slaughtered by the thousands in the nineteenth century and reduced from an estimated total population of more than four million to fewer than 2,000. Today, numbers have increased to several thousands through concerted conservation efforts, but they are very much restricted to a few local protected sites within their historical range. Similarly, saigas (Saiga tatarica) once occupied much of the steppes of central Asia, but were severely depleted through human exploitation. After protection, they regained much of their former range, only to once more be decimated by hunters killing them for their horns for use in the medicinal trade.


Being obligate herbivores, Bovidae eat a wide variety of plant types, and so members of this family are found in a wide range of habitats where they can find sufficient food. Each species tends to favor specific habitats or, more often, mixes of habitats, with some species being more adaptable than others. In many ecosystems, these bovids are the primary prey of large carnivores and thus are key components of many animal communities.

Members of the Bovidae are found in almost all major terrestrial ecosystems and habitat types. Depending on species, they can be found in open habitats such as deserts, grasslands, savanna, steppe, alpine and arctic tundra, as well as dense habitats such as swamps, riparian forests (i.e., forest near rivers and streams), shrublands, forested parklands, and tropical forests. However, bovids are probably most numerous and diverse in subtropical and tropical savannas and grasslands. Although different species specialize on particular habitats, as a family, Bovidae occupy habitats from low-elevation valley floors to mountain tops.

Some species prefer open habitats, others prefer forests, and still others occupy both. Typical open-habitat dwellers include species such as American bison, saiga, wildebeest, and various antelopes and gazelles. Shrublands are home to species like lesser kudu (Tragelaphus imberbis) and nilgai (Boselaphus tragocamelus). Swamps and floodplains are favored by Asian water buffalo and anoas, as well as African species like the Nile lechwe and sitatunga. Gemsbok occupies deserts and other arid regions, as do Barbary sheep (Ammotragus lervia). In tropical forests, there is a range of bovids from the various large cattle such as gaur and banteng in southern Asia, to smaller species such as the newly discovered saola or Vu Quang ox (Pseudoryx nghetinhensis) of Southeast Asia, and the bongo (Tragelaphus eurycerus) of Africa. Familiar species found in mountains and other high-elevation habitats include the yak of the Himalaya mountains and Tibetan Plateau, the wild mountain sheep (Ovis), whose members are found throughout the mountains of Eurasia and North America, and the wild goats and related ibex (Capra).

The birthing season is a time when females of many species seek out specific habitats that provide them greater security for giving birth and for protecting the newborn young. Depending on species, such secure habitats for parturition can range from dense brush to steep cliffs. The mating season, or rut, in some species of Bovidae, also occurs in particular areas, but it is uncertain whether this is due to some special attribute of the habitat, or simply reflects where they happen to be at that time.


Social organization

Bovidae exhibit a range of sociality in their grouping behavior. Some species are solitary or near solitary, such as the bongo and dik-diks (Madoqua) of Africa. Species at this end of the group size spectrum are often territorial, living alone or in groups of two to three animals, usually in closed forests and dense shrublands. In other species, the basic unit of two to three is similar, but larger temporary groups form at certain periods in the year. Some, like klipspringer (Oreotragus oreotragus), live as mated pairs for most of the year. Bovids living in open habitats almost always occur in medium to large sexually segregated groups, with adult males living separately from females and young for most of the year. Group size across the whole spectrum appears to be dependent more strongly on habitat structure than on characteristics of the species; the larger groups are more commonly encountered in open habitats such as grasslands and savannas, and smaller groups in dense forests where visibility and, consequently, group cohesion are reduced. The largest bovid groups have been recorded in North American plains bison in the early nineteenth century, and today, the largest to be seen are the migratory herds of blue wildebeest (Connochaetes taurinus) in the Serengeti of Tanzania. In both cases, these "supergroups" were comprised of several thousands of individuals, probably comprised of smaller, more stable units, although group membership can be quite fluid. The primary benefit of living in groups is reduced predation due to dilution (decreased probability of being killed) and to increased vigilance (many eyes to detect predators).

Several species of Bovidae, particularly many of the African antelopes, are territorial, either defending territories year-round or only during the mating season. Other bovids occupy undefended home ranges that are, for the most part, used from year to year. Year-round territoriality can occur in any species inhabiting areas with relatively predictable, high-quality food supplies that are economically worth defending. This behavior is found in small forest-dwelling bovids such as the Cephalophinae and dwarf antelopes, as well as in larger African species such as the various kobs and reedbucks (Redunca). In species holding territories for reproductive purposes, the male owner most often advertises his presence by making himself conspicuous, for example, by standing on a high point of ground (e.g., topi, Damaliscus lunatus), and often marks points on the boundary using secretions of glands such as the antorbital gland just in front of the eye, or with dung and urine.

Social behavior

Bovids are generally highly social ungulates with a range of communication systems and displays. Many are vocal, with vocalizations ranging from the lion-like roaring of plains bison (Bison bison) to grunts, snorts, whistles, and barks. When on the move, an almost constant, relatively quiet grunting is

typical of the large-herd-forming species such as bison and wildebeest.

Bovid horn structure is closely related to fighting style. Horn size and shape vary and are grouped into four types. The relatively short, smooth, sharp-pointed horns of species such as duikers (Cephalophus) and North American mountain goat (Oreamnos americanus) are used for jabbing. These are the most dangerous horn types; the smoothness and sharpness mean that they are capable of inflicting lethal wounds. Species having such horns attempt to avoid unnecessary physical contact and rely more heavily on threat displays. Two other horn types are the heavily ridged and twisted forms found in impala (Aepyceros melampus) and blackbuck (Antilope cervicapra), and the relatively long, curved and relatively slender, ridged horns of oryx (Oryx) and sable antelope (Hippotragus niger); both these horn types are used for head-to-head wrestling. The ridges and twisted shapes help catch and hold an opponent's horns, and the combatants wrestle in an attempt to twist the opponent off balance and allow them to stab with the horn points. The fourth type is the relatively massive, solid horns of species such as African buffalo (Syncerus caffer) and bighorn sheep (Ovis canadensis), which are employed to butt heads. Species with this style use their horns like clubs, and sheep and goats often increase the force of the blow either by running at each other, standing on the hind legs and then dropping into the clash, or, in some cases, using the advantage of higher ground. Fighting with conspecifics for status, territory, or mates is the primary function

of horns, but they can occasionally be used secondarily in defense against predators.

Displays are used by many animals, including bovids, to communicate in a range of social interactions. Lateral displays are common in many Bovidae, and often emphasized by adaptations that enhance the size (real and apparent) of the lateral profile. In the American bison (Bison bison) and gaur (Bos gaurus), the thoracic spines are elongated, permanently increasing the dimensions of their body profile. Other morphological adaptations that enlarge the lateral profile include dewlaps, the flap of skin hanging from the neck and chest of eland (Taurotragus oryx) and the zebu breed of domestic cattle (Bos taurus), and manes of long hairs. In greater kudu (Tragelaphus strepsiceros) and urial sheep (Ovis vignei), for example, the mane falls from the underside of the neck, and in nyala (Tragelaphus angasii), it extends along the underside of the belly as well. A temporary increase in lateral profile is achieved in some species such as the roan antelope (Hippotragus equinus) and chamois (Rupicapra rupicapra). They have a narrow band of long guard hairs running over the shoulders and onto the back, which can be raised (piloerection) to increase apparent body size. This effect can be emphasized because these erectile hairs are often of a contrasting color to the rest of the body, thus drawing attention to the display. Striking body coloration patterns, often involving contrasting colors or shades, are commonly used in displays by members of the Bovidae.

Activity patterns and migratory movements

Rumination imposes regular, alternating periods of feeding bouts, followed by rest-rumination periods. Depending on habitat type and to a lesser extent group size, after feeding, the animal will move to more predator-secure habitats to rest and ruminate. The diurnal pattern of these activities can also be affected by predation pressure, especially hunting by humans, with the result that animals become crepuscular, feeding primarily around dawn and dusk. Nocturnal feeding also occurs, but seems to be most frequent during moonlit nights.

Bovids usually make seasonal use of their environment by occupying different habitats at different times of the year. Most seasonal movements or migrations are related primarily to food availability. In temperate regions, bovids move to different areas, often according to the seasons, attempting to find the best foraging conditions available to them. Thus in winter, they congregate in areas where there is not only adequate food, but also shallow snow, shelter from harsh climatic conditions, and habitat or terrain to avoid predators. In spring, the animals move to sites where snow melts early and forage begins to grow. In summer, further movements occur to sites where there is abundant and nutritious forage that will allow the animals to acquire sufficient energy to meet not only their immediate needs, but also enough to deposit fat for winter. Males need high-quality habitat so they can store fat that supports them during the rut. In mountainous areas, the migrations are usually altitudinal and related to snow accumulation and plant growth. Animals in these areas often spend the winter at low elevations where snow depths are usually shallow and forage more available. In spring, the animals migrate upward, following the greening of new vegetation as the snowline retreats. Snow accumulation in fall and early winter then forces them to lower elevations, unless they can forage along snow-free wind-swept ridges. In the tropics, migrations occur as animals take advantage of new forage growth during rainy seasons. In exceptional cases, populations may make extremely long-distance migrations each year. For example, blue wildebeest in Serengeti have an annual migration of almost 2,000 mi (1,200 km) round trip. These migrations in tropical regions achieve the same ecological benefits as those in temperate regions. Animals move about their environment to exploit seasonal foraging opportunities and thus increase their reproductive success or reduce their mortality.

Feeding ecology and diet

All members of the Bovidae are obligate herbivores, and are either grazers, browsers, or mixed grazer-browsers. Body size in Bovidae affects food requirements and feeding styles because of the relationship between size and metabolic requirements. Small species require relatively more energy and higher-quality food than do large species. In general, small bovids tend to be selective (concentrated) feeders, eating the most nutritious and digestible plant species and parts, whereas large species are usually less selective bulk feeders, which consume large quantities of low-quality forage.

Bovids have various adaptations for foraging. Besides their modified lower incisors and canines, and in grazers, their high-crowned (hypsodont) cheek teeth, the shape of the mouth is also important for feeding. Browsing species tend to have narrow muzzles and pointed pre-maxillae, grazers have broader muzzles with square pre-maxillae, and in mixed grazer-browsers, the muzzle and pre-maxillae are, not surprisingly, intermediate. Most bovids have elongated skulls with the eyes located laterally and toward the top of the head. This elongated skull not only helps with foraging in some species, but might also benefit them to more easily detect predators while feeding. Browsing bovids will often stand on their hind legs to gain access to higher levels of shrubs. Many also have long slender necks that also help them to browse higher up a shrub or bush; the gerenuk (Litocranius walleri) has relatively the longest neck of all bovids and it, too, will stand on its hind legs when browsing particularly tall bushes.

Reproductive biology

Female bovids usually give birth to their first young when two or three years old, while most males, although capable of breeding around this same age, usually do not begin to fully participate in reproductive activities until older. Typically, females are interoparous, giving birth to one, sometimes two, young each year throughout their life. Males are usually semelparous, spending their early years growing large bodies and weapons (hooves and horns), and concentrating their mating activity to a limited number of years toward the end of their life.

Births are usually timed to coincide with the beginning of the annual plant growth cycle, so that females can benefit from the nutritious forage for lactation, and the young have a long time to grow before the onset of more difficult conditions in their first winter or dry season.

Parental care

Only females provide parental care in the Bovidae. Adult males, for the most part, live separately, either alone or in groups with other males, and thus take no part in rearing young. Females may remain in the group to give birth or leave to seek a secluded area with dense cover as concealment against predators. Like other artiodactyls, the young may be hiders and followers in the first week or two of life, either remaining hidden during the day while the mother feeds elsewhere, or remaining near her.

Mating systems and courtship

The majority of bovids are polygynous, with a male mating with more than one female. Only some of the small species such as dik-diks and dwarf antelopes form pair bonds, with a male and female usually remaining together in a territory held year-round. The more common polygynous-mating systems are temporary, with a male defending one or several females at once against other males in order to mate with them. When a male defends a single female at a time, as in most caprins, this is called a tending pair. When the male defends a group of females, this is termed a harem. Males in several species also defend mating territories, which contain resources such as rich food patches and security from predators. These resources attract females so that the male can then attempt to keep them on his territory so he can court and mate with them. Usually, the territories with the best resources are held by the most dominant males. Owning a territory not only attracts females, the male often has the added benefit of being able to mate with less interference.

Examples of species holding mating territories include the various African gazelles (Gazella) and the springbok (Antidorcas marsupialis).

Another mating system, lekking, is very rare in mammals. It has been observed most often in the Bovidae, but only in four African forms, all belonging to the subfamily Reduncinae: Uganda kob (Kobus kob thomasi), white-eared kob (K. k. leucotis), Kafue lechwe (K. leche), and topi. Lekking involves males defending very small territories, often only a few feet (meters) in diameter, located at a specific location called an arena. Many males gather on the same arena, each defending its own small patch of ground, which contains no resources that could attract females. The males defend their territories during day, and females come to them. Once a female enters a territory, the male tries to keep her from moving off long enough so that he can copulate with her. Lekking is not only rare, but is not seen in all populations within a species, nor is it performed each year. It seems to occur more frequently when a population is at high density. At lower densities, each male either holds larger resource territories to attract females, or defends a harem without holding a territory. Lekking is a good example of the flexibility

of social organization in general and of mating systems in particular.

Typically, only males perform courtship; only in rare circumstances do females court males. Although courtship behaviors are species-specific, there are general patterns in common. A male generally approaches females in postures that are non-threatening, and once a female accepts his presence, he will perform additional courtship patterns of increasing physical contact. During this time, the male assesses whether the female is in estrus or not by testing her urine and by her receptive behavior. Such behavior occurs until he is able to mount and copulate with the female. While in many species there may be only three of four distinct courtship patterns, much more elaborate courtship repertoires are found in the Caprinae.

Conservation status

A total of 122 species within the Bovidae is listed in the IUCN Red List of Threatened Species. The listing statistics for this family are: Extinct: 4 species; Extinct in Wild: 2 species; Critically Endangered: 7 species; Endangered: 20 species; Vulnerable: 25 species; and Lower Risk: 64 species. Hence, 58 of these 122 species, or 47%, are listed in categories of conservation concern.

In most cases, threats to wild Bovidae come from loss of habitat as human populations increase and require more land for agriculture and exploitation of natural resources. Hunting for meat probably plays a slightly lesser role, although it does have significant and negative impacts in many areas, such as Africa, where poaching involving setting of hundreds of snares in an area can indiscriminately kill many different species. Increased access through the development of roads and jeep trails also adds to the risk of animals being killed, as does the ready availability of weapons that have accompanied the proliferation of armed conflicts around the world.

Most countries have protected area systems that help in the conservation of bovids and their habitat. They also have various laws regulating hunting. The main issue, however, is how well these laws and protected areas are enforced. In some parts of the world, trophy-hunting programs are established for conservation purposes. Only a limited number of animals are killed and the funds generated by this activity are used to benefit the animals harvested, often by creating incentives for local people to help protect the species and its habitat.

Significance to humans

Many species of bovids have attracted artists throughout the ages. Paleolithic artists commonly depicted bison and sometimes ibex, creating exquisite paintings and etchings on the walls of caves and other rock surfaces, as well as on portable artifacts. Later, petroglyphs and rock paintings of bovids have been found in Africa, Central Asia, and North America. A mythological creature, the Minotaur, a creature half human, half bull, comes from the Bronze Age Minoan culture of Crete, which flourished from around 2000 to 1400 b.c. Frescos and other artifacts from Crete show scenes of bull jumping, evidently a gymnastic sport practiced by both men and women, in connection with bull-worship rituals. The Minoans also sacrificed bulls, and bulls continued to figure in later Greek mythology. Human interactions with bulls continue to this day in the form of Spanish bullfights and Pamplona's annual running of the bulls.

Bovids have provided four of the world's most important domestic species of livestock: cattle, sheep, goats, and water buffalo. Wild goats were kept in captivity about 11,000 years ago in the Euphrates valley of southern Turkey, and goats and sheep were probably first domesticated about 10,000 years ago, with cattle perhaps a bit later. Some of the earliest sites of animal domestication are from the Middle East, an area referred to in archaeological literature as the "fertile crescent." However, there was very probably more than one center of bovid domestication, with the Indus basin and central Asia being the most likely. There were probably as many as three centers for the domestication of domestic goats, while for cattle, buffalo, and sheep, there were at least two centers.

Bovids are commonly hunted for meat and other products by local peoples in many parts of the world. Trophy hunters also seek out many species of Bovidae, primarily those species with large horns. In the southern Mediterranean, different forms of bull fighting have been popular, and even exported to Mexico. Perhaps these are derived from earlier activities in Greece and Crete.

"Bezoar stones," calcified concretions sometimes found in the stomachs of goats and ibex, were prized in the Middle Ages for testing whether food was poisoned. Aphrodisiac properties are still assigned to the horns of some species, and have most recently resulted in a major decline in saiga populations on the Russian steppe. This same "medicinal" trade is also beginning to impact wild sheep and goat populations in parts of Central Asia.

Bovids are not generally thought of as dangerous to humans, except perhaps domestic bulls and African buffalo. However, many species in this family are large and have dangerous weapons (hooves and horns), and adult males during the rut can be dangerous.

Domestic livestock, especially domestic goats, are often accused of being a major cause of habitat loss and degradation due to their overgrazing and over-browsing. This merely reflects their hardiness and wide feeding habits. The true responsibility for such habitat damage belongs to the humans who own them, but for many people forced to live in marginal areas, there is little choice but to eke out a living as best they can, even if this means degrading the vegetation on which they ultimately depend.



Estes, R. D. The Behavior Guide to African Mammals: Including Hoofed Mammals, Carnivores and Primates. Berkeley, Los Angeles, and London: The University of California Press, 1991.

Vrba, E. S., and G. B. Schaller, eds. Antelopes, Deer and Relatives: Fossil Record, Behavioral Ecology, Systematics, and Conservation. New Haven and London: Yale University Press, 2000.


Gatesy, J., D. Yelon, R. DeSalle, and E. S. Vrba. "Phylogeny of the Bovidae (Artiodactyla, Mammalia), Based on Mitochondrial Ribosomal DNA Sequences." Molecular Biology and Evolution 9 (1992): 433–446.

Geist, V. "The Evolution of Horn-like Organs." Behaviour 27 (1966): 177–214.

Hassanin, A., A. Seveau, H. Thomas, H. Bocherens, D. Billiou, and B. X. Nguyen. "Evidence from DNA that the Mysterious 'Linh Duong' (Pseudonovibos spiralis) Is Not a New Bovid." Comptes Rendus de l'Academie des Sciences Serie III-Sciences de la Vie-Life Sciences 324 (2001): 71–80.

Luikart, G., L. Gielly, L. Excoffier, J. D. Vigne, J. Bouvet, and P. Taberlet. "Multiple Maternal Origins and Weak Phylogeographic Structure in Domestic Goats." Proceedings of the National Academy of Sciences of The United States Of America 98 (2001): 5927–5932.

Lundrigan, B. "Morphology of Horns and Fighting Behavior in the Family Bovidae." Journal of Mammalogy 77 (1996): 462–475.

Roberts, S. C. "The Evolution of Hornedness in Female Ruminants." Behaviour 133 (1996): 399–442.

Thomas, H., A. Seveau, and A. Hassanin. "The Enigmatic New Indochinese Bovid, Pseudonovibos spiralis: An Extraordinary Forgery." Comptes Rendus de l'Academie des Sciences Serie III-Sciences de la Vie-Life Sciences 324 (2001): 81–86.


2002 IUCN Red List of Threatened Species. <>.

David M. Shackleton, PhD

Alton S. Harestad, PhD