Skip to main content

Genesis vs. Geology

Genesis vs. Geology

Overview

In the eighteenth century the dominance of biblical geology as stated in the Book of Genesis was challenged by new discoveries, the undermining of ancient authority, and a general spirit of revolution. Natural causes for the formation and shaping of the geological features were stressed by some, the power of unnatural catastrophes by others. Uneasy battle lines were drawn between those who took the Bible literally, those who sought compromise, and those who rejected biblical creation. Often debates and theories were long on words, and short on evidence. Creationists won the short-term battles, and geologists retreated to less controversial areas, until the argument resurfaced with the evolutionary theories of Charles Darwin (1809-1882).

Background

The ancient Greek philosophers speculated widely on the creation and formation of the Earth and its geological features. The most enduring ideas where those of Plato (427-347 b.c.), as passed down and modified by his pupil Aristotle (384-322 b.c.). They held that the natural order of the world was eternal and unchanging.

The rise of Christianity modified the Platonic model to a one directional history, with a fixed end in sight, the time when God judges and destroys the world. This implied there was no need to understand the 'fallen' world, as it was almost at an end. However, as the centuries passed, intellectuals in the church began to seriously consider the origin of the earth. The most influential was St. Augustine (354-430), whose ideas dominated Christian theology for centuries.

St. Augustine's starting point was searching for the ultimate truth of the Bible and the questions he considered were: Were the beasts of prey and venomous animals created before, or after, the fall of Adam? If before how can their creation be reconciled with God's goodness; if afterwards, how can their creation be reconciled to the letter of God's Word? Why did the Creator not say "Be fruitful and multiply," to plants as well as to animals? This style of questioning formed the framework for such debates for centuries to follow.

One persistent challenge to biblical accounts of creation was that posed by fossils. Shapes that resembled animals and plants were found inside rocks. Some closely resembled living organisms, others were unlike any creature known. Even more puzzling were the fossils of sea creatures found high in mountains. Some suggested that rocks naturally generated reproductions of living organisms. Others thought the striking similarities to living beings implied they must have once been plants and animals. But if so how did they bore into solid rock, and how did sea creatures climb mountains?

Before the sixteenth century the general view was that the older a text the more reliable it was. The discovery of the New World by Christopher Columbus (1451-1506) was just one of many revolutions that threatened the authority of ancient texts. The Americas contained a vast number of new plants and animals, which made the biblical description of Noah's ark seem less believable. How had all these new species fit into the ark? There were different flora and fauna in different parts of the world, yet they had supposedly all come from the one source.

The era of exploration and discovery was also a time of social, religious and economic upheavals. Revolts and rebellions, and a new sense of radical change combined to make the period seem a total break with the past. This provoked a number of thinkers to reconsider the history of the Earth. Often the theories were very speculative, based on little physical evidence, and reflective of the upheavals of the time.

In the seventeenth century René Descartes (1596-1650) suggested that the Earth had been a fiery ball, which formed a crust as it cooled over deep waters, which were released when the crust collapsed. This theory became quite influential, as it supported the biblical flood, and formed the basis of many later theories.

Nicolaus Steno (1638-1686) studied a group of fossils known as tongue stones, and realized that they resembled shark teeth. This led him to propose that fossils were plants and animals trapped in river sediments, which over time hardened into rock.

However, the majority of new theories were attempts to fit the new evidence within the framework of the biblical creation. Thomas Burnet's (1635-1715) Sacred Theory of the Earth (1681) added to Descartes' concept of the crusted earth. He proposed that the Earth had once been a smooth sphere, with no seas, valleys or mountains. No rain more severe than gentle dew fell, until the Great Flood. This explained why only Noah's family had survived the deluge, as the ark was the first boat. In 1696 William Whiston (1667-1752) used Newtonian ideas to modify Burnet's theory, suggesting a comet had struck the earth to release the underground waters.

Impact

From the middle of the eighteenth century, a further wave of creation theories began to emerge. The expansion of mining, quarrying, and the building of canals had unearthed more and more evidence of fossils and sedimentary strata. There was a new trend to mechanical explanations of the processes of the Earth, with experimental and mathematical analysis to support the theories.

In 1774, Georges Louis de Buffon (1707-88) produced a massive multi-volume work on natural history. He used the Newtonian ideas of natural forces and empirical causes to explain the observed geology of the world. His experiments on the cooling of iron spheres suggested that the earth was 75,000-years-old, much older than the Bible suggested. His manuscript notes however, suggest he actually thought the earth was billions of years old, but did not think such a figure would be understood.

As it was his ideas caused enough trouble. The faculty of the Sorbonne, where Buffon held a post, declared that he was opposing "the sacred deposit of truth committed to the Church." He was dismissed from his position and forced to print a complete retraction which read: "I declare that I had no intention to contradict the text of Scripture; that I believe most firmly all therein related about the creation, both as to order of time and matter of fact. I abandon everything in my book respecting the formation of the earth, and generally all which may be contrary to the narrative of Moses."

In England James Hutton (1726-1797) printed his Theory of the Earth (1795), which suggested that the weathering effects of water produced the sedimentary layers. This sediment was raised through volcanic action, and the erosion of wind, rain and rivers sculpted valleys and plains, starting the cycle again. However, based on observation and experimentation of river flow and mud content, Hutton realized this process would require much longer than 6,000 years. Hutton's theory attempted to explain the geological structure of the earth without resorting to catastrophic events such as worldwide flooding, comets, or massive earthquakes. This emphasis of slow, gradual change over time came to be known as Uniformitarianism.

Hutton's views were opposed not only by the literal defenders of the Bible, but also by another group of geologists who thought that violent catastrophes were responsible for the shaping of the earth. The social and political revolutions that were occurring in the period provided a backdrop for the geological catastrophists. The old Platonic idea of an unchanging world had seemed less valid in a period of dramatic change. If the once secure institutions of religion and government could undergo revolutions, then why not the Earth? The divisions between catastrophists and those believing in a slow process were further sub-divided into those who stressed the role of water (neptunists) and those who favored volcanic action (vulcanists).

The divided nature of the new challengers to biblical creation made them easier targets for their religious opponents. There was a strong backlash against those who sought "nothing less than to depose the Almighty Creator of the universe from his office." The poet William Cowper neatly summarized the traditionalist viewpoint. "Some drill and bore /The solid earth, and from the strata there / Extract a register, by which we learn / That He who made it, and revealed its date / To Moses, was mistaken in its age!"

Geologists began to avoid questions of the historical earth, and focused more on activity they could observe directly. In doing so they accumulated much more solid evidence of the natural forces that alter the earth. However, there were some unexpected consequences of the continuing attacks on the new geology. The repeated condemnation of Hutton's views actually served to popularize his once obscure ideas. It was through their exposure to criticism that the stronger theories developed and gained supporters.

In 1830 the debate flared up again with Charles Lyell's (1797-1875) Principles of Geology. Lyell revived and popularized Hutton's Uniformitarianism. However, the most impassioned battles between science and religion came when Charles Darwin (1809-1882) applied the principles of Uniformitarianism to living creatures, suggesting not only that the earth was very old, but also that the animals of the present had evolved from earlier forms.

Final evidence for the age of the Earth was not uncovered until the early twentieth century when the discovery of radioactivity, and the principle of radioactive half-life, allowed for the age of the Earth to be calculated by atomic physics.

The late eighteenth century debates between religion and the new science of geology resulted in an uneasy retreat by many geologists. Some early theories were poorly constructed, based on sketchy evidence, and the scientific community presented a fractured and uncoordinated case for a creation other than the Judeo-Christian Book of Genesis. However, the early work of Buffon, Hutton and others was expanded upon and refined in the following century, with new evidence and experimentation. This opened up a new way of viewing time and the history of the earth. Just as microscopes showed the world of the very small, geology revealed the world of the very old.

DAVID TULLOCH

Further Reading

Books

Barnes, Barry and Shapin, Steven, eds. Natural Order-Historical Studies of Scientific Culture. London: Sage, 1979.

Hallam, A. Great Geological Controversies Oxford: Oxford University Press, 1983.

Moore, John A. Science as a Way of Knowing: The Foundations of Modern Biology. Cambride, MA: Harvard University Press, 1993.

Porter, Roy. The Making of Geology: Earth Science in Britain 1660-1815. Cambridge: Cambridge University Press, 1977.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Genesis vs. Geology." Science and Its Times: Understanding the Social Significance of Scientific Discovery. . Encyclopedia.com. 25 Sep. 2018 <http://www.encyclopedia.com>.

"Genesis vs. Geology." Science and Its Times: Understanding the Social Significance of Scientific Discovery. . Encyclopedia.com. (September 25, 2018). http://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/genesis-vs-geology

"Genesis vs. Geology." Science and Its Times: Understanding the Social Significance of Scientific Discovery. . Retrieved September 25, 2018 from Encyclopedia.com: http://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/genesis-vs-geology

Learn more about citation styles

Citation styles

Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

http://www.mla.org/style

The Chicago Manual of Style

http://www.chicagomanualofstyle.org/tools_citationguide.html

American Psychological Association

http://apastyle.apa.org/

Notes:
  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.