Skip to main content

Protein Solubility

Protein Solubility


At the surfaces of proteins are amino acid residues that interact with water. The amino acids are referred to as hydrophilic amino acids and include arginine, lysine, aspartic acid, and glutamic acid. At pH 7 the side chains of these amino acids carry chargespositive for arginine and lysine, negative

for aspartic acid and glutamic acid. As the pH increases, lysine and arginine begin to lose their positive charge, and at pHs greater than about 12 they are mainly neutral. In contrast, as pH decreases, aspartic acid and glutamic acid begin to lose their negative charges, and at pHs less than 4 they are mainly neutral.

The surface of a protein has a net charge that depends on the number and identities of the charged amino acids, and on pH. At a specific pH the positive and negative charges will balance and the net charge will be zero. This pH is called the isoelectric point, and for most proteins it occurs in the pH range of 5.5 to 8. A protein has its lowest solubility at its isoelectric point. If there is a charge at the protein surface, the protein prefers to interact with water, rather than with other protein molecules. This charge makes it more soluble. Without a net charge, protein-protein interactions and precipitation are more likely.

The solubility of proteins in blood requires a pH in the range of 7.35 to 7.45. The bicarbonatecarbonic acid buffer system of blood (HCO3 + H+ H2CO3), in which the bicarbonate is in excess of the carbonic acid, helps to maintain the correct pH. Exhalation of carbon dioxide from the lungs causes some of the bicarbonate ions in blood to combine with protons, and this would raise the pH. However, because there is an excess of bicarbonate ions and protons, the loss of a small number of protons does not influence the pH significantly.

The proteins of protein mixtures can be separated using a technique known as isoelectric focusing. A mixture is placed in a polyacrylamide gel that has a pH gradient. An anode (positive electrode) and a cathode (negative electrode) are positioned at the low and high ends of the pH gradient, respectively. If a protein is located in the high pH region, it will be negatively charged and will move toward the anode. As the protein moves to a lower pH region, its surface charge will become less negative, and a pH region will be reached at which the protein net charge is zero (the isoelectric point). The protein will stop moving and, because different proteins have different isoelectric points, separation can be achieved.

see also Proteins.

Ian S. Haworth

Bibliography

Alberts, Bruce; Bray, Dennis; Johnson, Alexander; et al. (1998). Essential Cell Biology: An Introduction to the Molecular Biology of the Cell. New York: Garland.

Internet Resources

"Proteins." Unilever Education Advanced Series. Available from <http://www.schoolscience.co.uk/content/5/chemistry/>.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Protein Solubility." Chemistry: Foundations and Applications. . Encyclopedia.com. 19 Oct. 2018 <http://www.encyclopedia.com>.

"Protein Solubility." Chemistry: Foundations and Applications. . Encyclopedia.com. (October 19, 2018). http://www.encyclopedia.com/science/news-wires-white-papers-and-books/protein-solubility

"Protein Solubility." Chemistry: Foundations and Applications. . Retrieved October 19, 2018 from Encyclopedia.com: http://www.encyclopedia.com/science/news-wires-white-papers-and-books/protein-solubility

Learn more about citation styles

Citation styles

Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

http://www.mla.org/style

The Chicago Manual of Style

http://www.chicagomanualofstyle.org/tools_citationguide.html

American Psychological Association

http://apastyle.apa.org/

Notes:
  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.