Lanthanides

views updated May 23 2018

LANTHANIDES

CONCEPT

Along the bottom of the periodic table of elements, separated from the main body of the chart, are two rows, the first of which represents the lanthanides. Composed of lanthanum and the 14 elements of the lanthanide series, the lanthanides were once called the "rare earth" metals. In fact, they are not particularly rare: many of them appear in as much abundance as more familiar elements such as mercury. They are, however, difficult to extract, a characteristic that defines them as much as their silvery color; sometimes high levels of reactivity; and sensitivity to contamination. Though some lanthanides have limited uses, members of this group are found in everything from cigarette lighters to TV screens, and from colored glass to control rods in nuclear reactors.

HOW IT WORKS

Defining the Lanthanides

The lanthanide series consists of the 14 elements, with atomic numbers 58 through 71, that follow lanthanum on the periodic table of elements. These 14, along with the actinidesatomic numbers 90 through 103are set aside from the periodic table due to similarities in properties that define each group.

Specifically, the lanthanides and actinides are the only elements that fill the f-orbitals. The lanthanides and actinides are actually "branches" of the larger family known as transition metals. The latter appear in groups 3 through 12 on the IUPAC version of the periodic table, though they are not numbered on the North American version.

The lanthanide series is usually combined with lanthanum, which has an atomic number of 57, under the general heading of lanthanides. As their name indicates, members of the lanthanide series share certain characteristics with lanthanum; hence the collective term "lanthanides." These 15 elements, along with their chemical symbols, are:

  • Lanthanum (La)
  • Cerium (Ce)
  • Praseodymium (Pr)
  • Neodymium (Nd)
  • Promethium (Pm)
  • Samarium (Sm)
  • Europium (Eu)
  • Gadolinium (Gd)
  • Terbium (Tb)
  • Dysprosium (Dy)
  • Holmium (Ho)
  • Erbium (Er)
  • Thulium (Tm)
  • Ytterbium (Yb)
  • Lutetium (Lu)

Most of these are discussed individually in this essay.

PROPERTIES OF LANTHANIDES.

Bright and silvery in appearance, many of the lanthanidesthough they are metalsare so soft they can be cut with a knife. Lanthanum, cerium, praseodymium, neodymium, and europium are highly reactive. When exposed to oxygen, they form an oxide coating. (An oxide is a compound formed by metal with an oxygen.) To prevent this result, which tarnishes the metal, these five lanthanides are kept stored in mineral oil.

The reactive tendencies of the other lanthanides vary: for instance, gadolinium and lutetium do not oxidize until they have been exposed to air for a very long time. Nonetheless, lanthanides tend to be rather "temperamental" as a class. If contaminated with other metals, such as calcium, they corrode easily, and if contaminated with nonmetals, such as nitrogen or oxygen, they become brittle. Contamination also alters their boiling points, which range from 1,506.2°F (819°C) for ytterbium to 3,025.4°F (1,663°C) for lutetium.

Lanthanides react rapidly with hot water, or more slowly with cold water, to form hydrogen gas. As noted earlier, they also are quite reactive with oxygen, and they experience combustion readily in air. When a lanthanide reacts with another element to form a compound, it usually loses three of its outer electrons to form what are called tripositive ions, or atoms with an electric charge of +3. This is the most stable ion for lanthanides, which sometimes develop less stable +2 or +4 ions. Lanthanides tend to form ionic compounds, or compounds containing either positive or negative ions, with other substancesin particular, fluorine.

Are They Really "Rare"?

Though they were once known as the rare earth metals, lanthanides were so termed because, as we shall see, they are difficult to extract from compounds containing other substancesincluding other lanthanides. As for rarity, the scarcest of the lanthanides, thulium, is more abundant than either arsenic or mercury, and certainly no one thinks of those as rare substances. In terms of parts per million (ppm), thulium has a presence in Earth's crust equivalent to 0.2 ppm. The most plentiful of the lanthanides, cerium, has an abundance of 46 ppm, greater than that of tin.

If, on the other hand, rarity is understood not in terms of scarcity, but with regard to difficulty in obtaining an element in its pure form, then indeed the lanthanides are rare. Because their properties are so similar, and because they are inclined to congregate in the same substances, the original isolation and identification of the lanthanides was an arduous task that took well over a century. The progress followed a common pattern.

First, a chemist identified a new lanthanide; then a few years later, another scientist came along and extracted another lanthanide from the sample that the first chemist had believed to be a single element. In this way, the lanthanides emerged over time, each from the one before it, rather like Russian matryoshka or "nesting" dolls.

EXTRACTING LANTHANIDES.

Though most of the lanthanides were first isolated in Scandinavia, today they are found in considerably warmer latitudes: Brazil, India, Australia, South Africa, and the United States. The principal source of lanthanides is monazite, a heavy, dark sand from which about 50% of the lanthanide mass available to science and industry has been extracted.

In order to separate lanthanides from other elements, they are actually combined with other substancessubstances having a low solubility, or tendency to dissolve. Oxalates and fluorides are low-solubility substances favored for this purpose. Once they are separated from non-lanthanide elements, ion exchange is used to separate one lanthanide element from another.

There is a pronounced decrease in the radii of lanthanide atoms as they increase in atomic number: in other words, the higher the atomic number, the smaller the radius. This decrease, known as the lanthanide contraction, aids in the process of separation by ion exchange. The lanthanides are mixed in an ionic solution, then passed down a long column containing a resin. Various lanthanide ions bond more or less tightly, depending on their relative size, with the resin.

After this step, the lanthanides are washed out of the ion exchange column and into various solutions. One by one, they become fully separated, and are then mixed with acid and heated to form an oxide. The oxide is then converted to a fluoride or chloride, which can then be reduced to metallic form with the aid of calcium.

REAL-LIFE APPLICATIONS

The Historical Approach

In studying the lanthanides, one can simply move along the periodic table, from lanthanum all the way to lutetium. However, in light of the difficulties involved in extracting the lanthanides, one from another, an approach along historical lines aids in understanding the unique place each lanthanide occupies in the overall family.

The terms "lanthanide series" or even "lanthanides" did not emerge for some timein other words, scientists did not immediately know that they were dealing with a whole group of metals. As is often the case with scientific discovery, the isolation of lanthanides followed an irregular pattern, and they did not emerge in order of atomic number.

Cerium was in fact discovered long before lanthanum itself, in the latter half of the eighteenth century. There followed, a few decades later, the discovery of a mineral called ytterite, named after the town of Ytterby, Sweden, near which it was found in 1787. During the next century, most of the remaining lanthanides were extracted from ytterite, and the man most responsible for this was Swedish chemist Carl Gustav Mosander (1797-1858).

Because Mosander had more to do with the identification of the lanthanides than any one individual, the middle portion of this historical overview is devoted to his findings. The recognition and isolation of lanthanides did not stop with Mosander, however; therefore another group of minerals is discussed in the context of the latter period of lanthanide discovery.

Early Lanthanides

CERIUM.

In 1751, Swedish chemist Axel Crönstedt (1722-1765) described what he thought was a new form of tungsten, which he had found at the Bastnäs Mine near Riddarhyttan, Sweden. Later, German chemist Martin Heinrich Klaproth (1743-1817) and Swedish chemist Wilhelm Hisinger (1766-1852) independently analyzed the material Crönstedt had discovered, and both concluded that this must be a new element. It was named cerium in honor of Ceres, an asteroid between Mars and Jupiter discovered in 1801. Not until 1875 was cerium actually extracted from an ore.

Among the applications for cerium is an alloy called misch metal, prepared by fusing the chlorides of cerium, lanthanum, neodymium, and praseodymium. The resulting alloy ignites at or below room temperature, and is often used as the "flint" in a cigarette lighter, because it sparks when friction from a metal wheel is applied.

Cerium is also used in jet engine parts, as a catalyst in making ammonia, and as an anti-knock agent in gasolinethat is, a chemical that reduces the "knocking" sounds sometimes produced in an engine by inferior grades of fuel. In cerium (IV) oxide, or CeO2, it is used to extract the color from formerly colored glass, and is also applied in enamel and ceramic coatings.

GADOLINIUM.

In 1794, seven years after the discovery of ytterite, Finnish chemist Johan Gadolin (1760-1852) concluded that ytterite contained a new element, which was later named gadolinite in his honor. A very similar name would be applied to an element extracted from ytterite, and the years between Gadolin's discovery and the identification of this element spanned the period of the most fruitful activity in lanthanide identification.

During the next century, all the other lanthanides were discovered within the composition of gadolinite; then, in 1880, Swiss chemist Jean-Charles Galissard de Marignac (1817-1894) found yet another element hiding in it. French chemist Paul Emile Lecoq de Boisbaudran (1838-1912) rediscovered the same element six years later, and proposed that it be called gadolinium.

Silvery in color, but with a sometimes yellowish cast, gadolinium has a high tendency to oxidize in dry air. Because it is highly efficient for capturing neutrons, it could be useful in nuclear power reactors. However, two of its seven isotopes are in such low abundance that it has had little nuclear application. Used in phosphors for color television sets, among other things, gadolinium shows some promise for ultra hightech applications: at very low temperatures it becomes highly magnetic, and may function as a superconductor.

Mosander's Lanthanides

LANTHANUM.

Between 1839 and 1848, Mosander was consumed with extracting various lanthanides from ytterite, which by then had come to be known as gadolinite. When he first succeeded in extracting an element, he named it lanthana, meaning "hidden." The material, eventually referred to as lanthanum, was not prepared in pure form until 1923.

Like a number of other lanthanides, lanthanum is very softso soft it can be cut with a knifeand silvery-white in color. Among the most reactive of the lanthanides, it decomposes rapidly in hot water, but more slowly in cold water. Lanthanum also reacts readily with oxygen, and corrodes quickly in moist air.

As with cerium, lanthanum is used in misch metal. Because lanthanum compounds bring about special optical qualities in glass, it also used for the manufacture of specialized lenses. In addition, compounds of lanthanum with fluorine or oxygen are used in making carbon-arc lamps for the motion picture industry.

SAMARIUM.

While analyzing an oxide formed from lanthanide in 1841, Mosander decided that he had a new element on his hands, which he called didymium. Four decades later, Boisbaudran took another look at didynium, and concluded that it was not an element; rather, it contained an element, which he named samarium after the mineral samarskite, in which it is found. Still later, Marignac was studying samarskite when he discovered what came to be known as gadolinium. But the story did not end there: even later, in 1901, French chemist Eugéne-Anatole Demarçay (1852-1903) found yet another element, europium, in samarskite.

Samarium is applied today in nuclear power plant control rods, in carbon-arc lamps, and in optical masers and lasers. In alloys with cobalt, it is used in manufacturing the most permanent electromagnets available. Samarium is also utilized in the manufacture of optical glass, and as a catalyst in the production of ethyl alcohol.

ERBIUM AND TERBIUM.

To return to Mosander, he was examining ytterite in 1843 when he identified three different "earths," all of which he also named after Ytterby: yttria, erbia, and terbia. Erbium was the first to be extracted. A pure sample of its oxide was prepared in 1905 by French chemist Georges Urbain (1872-1938) and American chemist Charles James (1880-1928), but the pure metal itself was only extracted in 1934.

Soft and malleable, with a lustrous silvery color, erbium produces salts (which are usually combinations of a metal with a nonmetal) that are pink and rose, making it useful as a tinting agent. One of its oxides is utilized, for instance, to tint glass and porcelain with a pinkish cast. It is also applied, to a limited extent, in the nuclear power industry.

Mosander also identified another element, terbium, in ytterite in 1839, and Marignac isolated it in a purer form nearly half a century later, in 1886. To repeat a common theme, it is silvery-gray and soft enough to be cut with a knife. When hit by an electron beam, a compound containing terbium emits a greenish color, and thus it is used as a phosphor in color television sets.

Later Isolationof Lanthanides

YTTERBIUM, HOLMIUM, AND THULIUM.

For many years after Mosander, there was little progress in the discovery of lanthanides, and when it came, it was in the form of a third element, named after the town where so many of the lanthanides were discovered. In 1878, while analyzing what Mosander had called erbia, Marignac realized that it contained one or possibly two elements.

A year later, Swedish chemist Lars Frederik Nilson (1840-1899) concluded that it did indeed contain two elements, which were named ytterbium and scandium. (Scandium, with an atomic number of 21, is not part of the lanthanide series.) Urbain is sometimes credited for discovering ytterbium: in 1907, he showed that the materials Nilson had studied were actually a mixture of two oxides. In any case, Urbain said that the credit should be given to Marignac, who is the most important figure in the history of lanthanides other than Mosander. As for ytterbium, it is highly malleable, like other lanthanides, but does not have any significant applications in industry.

Swedish chemist Per Teodor Cleve (1840-1905) found in 1879 that erbia contained two more elements, which he named holmium and thulium. Thulium refers to the ancient name for Scandinavia, Thule. Rarest of all the lanthanides, thulium is highly malleableand also highly expensive. Hence it has few commercial applications.

DYSPROSIUM.

Named for the Greek word dysprositos, or "hard to get at," dysprosium was discovered by Boisbaudran. Separating ytterite in 1886, he found gallium (atomic number 31not a lanthanide); samarium (discussed above); and dysprosium. Yet again, a mineral extracted from ytterite had been named after a previously discovered element, and, yet again, it turned out to contain several elements. The substance in question this time was holmium, which, as Boisbaudran discovered, was actually a complex mixture of terbium, erbium, holmium, and the element he had identified as dysprosium. A pure sample was not obtained until 1950.

Because dysprosium has a high affinity for neutrons, it is sometimes used in control rods for nuclear reactors, "soaking up" neutrons rather as a sponge soaks up water. Soft, with a lustrous silver color like other lanthanides, dysprosium is also applied in lasers, but otherwise it has few uses.

EUROPIUM AND LUTETIUM.

Whereas many other lanthanides are named for regions in northern Europe, the name for europium refers to the European continent as a whole, and that of lutetium is a reference to the old Roman name for Paris. As mentioned earlier, Demarçay found europium in samarskite, a discovery he made in 1901. Actually, Boisbaudran had noticed what appeared to be a new element about a decade previously, but he did not pursue it, and thus the credit goes to his countryman.

Most reactive of the lanthanides, europium responds both to cold water and to air. In addition, it is capable of catching fire spontaneously. Among the most efficient elements for the capture of neutrons, it is applied in the control systems of nuclear reactors. In addition, its compounds are utilized in the manufacture of phosphors for TV sets: one such compound, for instance, emits a reddish glow. Yet another europium compound is added to the glue on postage stamps, making possible the electronic scanning of stamps.

Urbain, who discovered lutetium, named it after his hometown. James also identified a form of the lanthanide, but did not announce his discovery until much later. Except for some uses at a catalyst in the production of petroleum, lutetium has few industrial applications.

WHERE TO LEARN MORE

Cotton, Simon. Lanthanides and Actinides. New York: Oxford University Press, 1991.

Heiserman, David L. Exploring Chemical Elements and Their Compounds. Blue Ridge Summit, PA: Tab Books, 1992.

"Luminescent Lanthanides" (Web site). <http://orgwww.chem.uva.nl/lanthanides/> (May 16, 2001).

Snedden, Robert. Materials. Des Plaines, IL: Heinemann Library, 1999.

Oxlade, Chris. Metal. Chicago: Heinemann Library, 2001.

Stwertka, Albert. A Guide to the Elements. New York: Oxford University Press, 1996.

Whyman, Kathryn. Metals and Alloys. Illustrated by Louise Nevett and Simon Bishop. New York: Gloucester Press, 1988.

KEY TERMS

ALLOY:

A mixture of two or more metals.

ATOMIC NUMBER:

The number of protons in the nucleus of an atom. Since this number is different for each element, elements are listed on the periodic table of elements in order of atomic number.

ION:

An atom or atoms that has lost or gained one or more electrons, and thus has a net electrical charge.

LANTHANIDE CONTRACTION:

A progressive decrease in the radius of lanthanide atoms as they increase in atomicnumber.

LANTHANIDE SERIES:

A group of 14 elements, with atomic numbers 58 through71, that follow lanthanum on the periodic table of elements.

LANTHANIDES:

The lanthanide series, along with lanthanum.

OXIDE:

A compound formed by the chemical bonding of a metal with oxygen.

PERIODIC TABLE OF ELEMENTS:

A chart showing the elements arranged in order of atomic number, grouping them according to common characteristics.

RARE EARTH METALS:

An old name for the lanthanides, reflecting the difficulty of separating them from compounds containing other lanthanides or other substances.

TRANSITION METALS:

Groups 3 through 12 on the IUPAC or European version of the periodic table of elements. The lanthanides and actinides, which appear at the bottom of the periodic table, are "branches" of this family.

Lanthanides

views updated May 29 2018

Lanthanides

Discovery of the lanthanides

Properties of the lanthanides

Isolation and production

Uses of lanthanides

Lanthanide

Resources

The lanthanides are a series of 14 metallic elements that appear at the bottom of the periodic table. Lanthanum, the element preceding the lanthanides in the periodic table, is usually also included in a discussion of the lanthanides since all 15 elements have very similar properties. When first discovered and isolated, the lanthanides were called the rare earth elements. Many uses have been found for these elements and their compounds despite their expense.

Discovery of the lanthanides

Although once called the rare earths, most lanthanides are not particularly rare in Earths crust. Today, with the exception of promethium, the lanthanides are known to have abundances comparable to many other elements. The 15 elements, together with their chemical symbols, are lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lute-tium (Lu). Thulium, one of the scarcest lanthanides, has an abundance in Earths crust of 0.2 parts per million (ppm), and is more abundant than arsenic or mercury. The most abundant is cerium (46 ppm), which is more abundant than tin. Promethium, which is radioactive, is found only in trace amounts in uranium ores. Small amounts have been isolated from the spent fuel of nuclear reactors. The lanthanide elements, cerium through lutetium, have corresponding atomic numbers of 58 through 71.

The discovery of the lanthanides spanned more than a century of work, beginning in the late 1700s. In 1794, Finnish chemist Johan Gadolin (17601852) studied ytterbia, which he believed was a new element. More than a decade later, English chemist Sir Humphry Davy (17781829) showed that ytterbia was a compound, composed of oxygen and a metal, rather than an element. Because many of the lanthanides occur together in the same minerals, and due to their similar properties, separation of the lanthanides proved a challenge to nineteenth century chemists. This often led to confusion, since it was difficult to distinguish one element from another or from its mineral precursor. The mid-nineteenth century invention of the spectroscope, an instrument that measures light emission and absorption from heated substances, assisted with unraveling lanthanide identification. With this instrument it is possible to analyze light from the sun and the stars, and chemists now know that lanthanides are present in other parts of our solar system and even beyond it.

Properties of the lanthanides

Like many metals, the lanthanides have a bright silvery appearance. Five of the elements (La, Ce, Pr, Nd, and Eu) are very reactive and when exposed to air react with oxygen to form an oxide coating that tarnishes the surface. For this reason, these metals are stored under mineral oil. The remainder of the lanthanides are not as reactive, and some (Gd and Lu) retain their silvery metallic appearance for a long time. When contaminated with nonmetals, such as oxygen or nitrogen, the lanthanides become brittle. They will also corrode more easily if contaminated with other metals, such as calcium. Their melting points, which range from about 1,506.2°F (819°C) (Yb) to about 3,025.4°F (1,663°C) (Lu), are also sensitive to contamination. The lanthanides form alloys with many other metals, and these alloys exhibit a wide range of physical properties.

The lanthanides react slowly with cold water (more rapidly with hot water) to form hydrogen gas, and readily burn in air to form oxides. Oxides are substances in which a metal and oxygen have chemically combined to form a compound. For example, samarium and oxygen combine to form the compound samarium oxide. Yttrium has a natural protective oxide coating, making it much more resistant. The lanthanides form compounds with many nonmetals, such as hydrogen, fluorine, phosphorous, sulfur, and chlorine, and heating may be required to induce these reactions.

The arrangement of electrons in an atom (the electron configuration) influences the atoms reactivity with other substances. In particular, it is the outer or valence electrons-those furthest away from the center of the atom-that are most involved in reactions since these are exposed to the surrounding environment. All the lanthanides, from cerium to lutetium, have a similar arrangement of their outer electrons. This explains why they are all found in nature together and why they all react similarly. When they react with other elements to form compounds, most lanthanides lose three of their outer electrons to form tripositive ions. For most compounds of the lanthanides, this is the most stable ion. Some lanthanides form ions with a positive two or four charge, but these are usually not as stable. A comparison of the sizes of the lanthanide atoms, and their ions, reveals a progressive decrease in going from lanthanum to lutetium and is referred to as the lanthanide contraction. Compounds containing positive and negative ions are called ionic compounds. Most ionic lanthanide compounds are soluble in water. Compounds of lanthanides with the element fluorine (lanthanide fluorides), however, are insoluble. Adding fluoride ions to a solution of tripositive lanthanide ions can generally be used as a characteristic test for the presence of the lanthanides. Likewise, lanthanide oxalates (oxalate is the negative ion CzO4<->-2) have low solubility.

Isolation and production

The lanthanides occur naturally in many minerals but are most concentrated in monazite, a heavy dark sand, found in Brazil, India, Australia, South Africa, and the United States. The composition of monazite varies depending on its location, but generally contains about 50% of lanthanide compounds by weight. Like any group of elements that have similar properties and that occur in nature together, the separation and purification of the lanthanides requires considerable effort. Consequently, commercial production of the lanthanides tends to be expensive.

To separate the lanthanides from other elements occurring with them, they are chemically combined with specific substances to form lanthanide compounds with low solubility (oxalates and fluorides, for example). A process known as ion exchange is then used to separate the lanthanides from each other. In this process, a solution of the lanthanides in ionic, soluble form is passed down a long column containing a resin. The lanthanide ions stick to the resin with various strengths based on their ion size. The lanthanum ion, being smallest, binds most tightly to the resin, whereas the largest ion, lutetium, binds the weakest. The lanthanides are then washed out of the ion exchange column with various solutions, emerging one at a time, and so are separated. Each is then mixed with acid, precipitated as the oxalate compound, and then heated to form the oxide. A number of methods have been used to obtain the lanthanides in metallic form. For example, the oxides can be converted to fluorides or chlorides which are then reduced with calcium to metallic form.

Uses of lanthanides

Although the lanthanide elements, alloys, and compounds have many uses, less expensive alternatives functioning just as efficiently are used where possible. But despite their cost, the unique properties of the lanthanides do sometimes favor their use over cheaper substances, and millions of tons of lanthanides, in metallic, alloy, and compound form, are produced annually. One of the earliest uses involved an alloy of cerium and iron, called Auer metal, which produced a brilliant spark when struck. This has been widely used as a flint in cigarette and gas lighters. Auer metal is one of a series of mixed lanthanide alloys called misch metals that have a variety of metallurgical applications. These alloys are composed of varying amounts of the lanthanide metals, mostly cerium and smaller amounts of others such as lanthanum, neodymium, and praseodymium. They have been used to impart strength, hardness, and inertness to structural materials. They have also been used to remove oxygen and sulfur impurities from systems.

As catalysts (substances that speed up chemical reactions), the lanthanides are widely used in the oil refining industry since they speed up the conversion of crude petroleum into widely used consumer products such as gasoline. The color television industry also makes extensive use of europium and yttrium oxides to produce the red colors on television screens. Other lanthanide compounds are used in streetlights, searchlights, and in the high-intensity lighting in sports stadiums. The ceramics industry uses lanthanide oxides to color ceramics and glasses. Optical lenses made with lanthanum oxide are used in cameras and binoculars. Others (Pr and Nd) are used in glass, such as in television screens, to reduce glare. Cerium oxide has been used to polish glass. The lanthanides have a variety of nuclear applications. Because they absorb neutrons, they have been used in control rods used to regulate nuclear reactors. They have also been used as shielding materials, and as structural components in reactors. Some lanthanides have unusual magnetic properties. For instance, cobalt-samarium magnets are very strong permanent magnets.

Lanthanide

Lanthanumwhich is used in various types of optical glassis the third element in Row 6 of the periodic table. Lanthanums atomic number is 57, its atomic mass is 138.9055, and its chemical symbol is La.

Credit for the discovery of lanthanum is usually given to Swedish chemist Carl Gustav Mosander (17971858). Mosander was very much interested in an unusual black rock found near the town of Bastnas, Sweden, in the 1830s. Over the next 60 years, chemists discovered seven new elements in that rock, one of them being lanthanum, discovered in 1839. The element was named after the Greek word lanthanein, meaning to hide.

Lanthanum is a white metal that is both ductile and malleable. It is relatively soft and can be cut with a sharp knife. The elements melting point is about 1,688°F (920°C), its boiling point is approximately 6,267°F (3,464°C), and its density is about 3.55 ounces per cubic inch (6.15 grams per cubic centimeter). It is a solid at room temperature. Lanthanum is chemically very active, reacting with both cold water and most acids. It also reacts with oxygen in moist air.

See also Element, chemical.

Resources

BOOKS

Cotton, S. Lanthanides and Actinides. New York: Oxford University Press, 1991.

Emsley, John. Natures Building Blocks: An A-Z Guide to the Elements. Oxford, UK: Oxford University Press, 2003.

Lide, David R., ed. CRC Handbook of Chemistry and Physics. 86th ed., Boca Raton, FL: CRC Press, 2005.

Siekierski, Slawomir. Concise Chemistry of the Elements. Chichester, UK: Horwood Publishing, 2002.

Tro, Nivaldo J. Introductory Chemistry. Upper Saddle River, NJ: Pearson Education, 2006.

Lanthanides

views updated May 17 2018

Lanthanides

The lanthanides are a series of 14 metallic elements that appear at the bottom of the periodic table . Lanthanum, the element preceding the lanthanides in the periodic table, is usually also included in a discussion of the lanthanides since all 15 elements have very similar properties. When first discovered and isolated, the lanthanides were called the rare earth elements. Many uses have been found for these elements and their compounds despite their expense.


Discovery of the lanthanides

Although once called the rare earths, most lanthanides are not particularly rare in the earth's crust. Today, with the exception of promethium, the lanthanides are known to have abundances comparable to many other elements. The 15 elements, together with their chemical symbols, are lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). Thulium, one of the scarcest lanthanides, has an abundance in the earth's crust of 0.2 parts per million (ppm), and is more abundant than arsenic or mercury. The most abundant is cerium (46 ppm), which is more abundant than tin. Promethium, which is radioactive, is found only in trace amounts in uranium ores. Small amounts have been isolated from the spent fuel of nuclear reactors. The lanthanide elements, cerium through lutetium, have corresponding atomic numbers of 58 through 71.

The discovery of the lanthanides spanned more than a century of work, beginning in the late 1700s. In 1794, the Finnish chemist Johan Gadolin (1760-1852) studied ytterbia, which he believed was a new element. More than a decade later, the English chemist Sir Humphry Davy (1778-1829) showed that ytterbia was a compound, composed of oxygen and a metal , rather than an element. Because many of the lanthanides occur together in the same minerals , and due to their similar properties, separation of the lanthanides proved a challenge to nineteenth century chemists. This often led to confusion, since it was difficult to distinguish one element from another or from its mineral precursor. The mid-nineteenth century invention of the spectroscope , an instrument that measures light emission and absorption from heated substances, assisted with unravelling lanthanide identification. With this instrument it is possible to analyze light from the Sun and the stars, and we now know that lanthanides are present in other parts of our solar system and even beyond it.


Properties of the lanthanides

Like many metals, the lanthanides have a bright silvery appearance. Five of the elements (La, Ce, Pr, Nd, Eu) are very reactive and when exposed to air react with oxygen to form an oxide coating that tarnishes the surface. For this reason these metals are stored under mineral oil. The remainder of the lanthanides are not as reactive, and some (Gd, Lu) retain their silvery metallic appearance for a long time . When contaminated with nonmetals, such as oxygen or nitrogen , the lanthanides become brittle. They will also corrode more easily if contaminated with other metals, such as calcium . Their melting points, which range from about 1,506.2°F (819°C) (Yb) to about 3,025.4°F (1,663°C) (Lu), are also sensitive to contamination . The lanthanides form alloys with many other metals, and these alloys exhibit a wide range of physical properties.

The lanthanides react slowly with cold water (more rapidly with hot water) to form hydrogen gas, and readily burn in air to form oxides. Oxides are substances in which a metal and oxygen have chemically combined to form a compound. For example, samarium and oxygen combine to form the compound samarium oxide. Yttrium has a natural protective oxide coating, making it much more resistant. The lanthanides form compounds with many nonmetals, such as hydrogen, fluorine, phosphorous, sulfur , and chlorine , and heating may be required to induce these reactions.

The arrangement of electrons in an atom (the electron configuration) influences the atom's reactivity with other substances. In particular, it is the outer or valence electrons-those furthest away from the center of the atom-that are most involved in reactions since these are exposed to the surrounding environment. All the lanthanides, from cerium to lutetium, have a similar arrangement of their outer electrons. This explains why they are all found in nature together and why they all react similarly. When they react with other elements to form compounds, most lanthanides lose three of their outer electrons to form tripositive ions. For most compounds of the lanthanides, this is the most stable ion. Some lanthanides form ions with a positive two or four charge, but these are usually not as stable. A comparison of the sizes of the lanthanide atoms , and their ions, reveals a progressive decrease in going from lanthanum to lutetium and is referred to as the lanthanide contraction. Compounds containing positive and negative ions are called ionic compounds. Most ionic lanthanide compounds are soluble in water. Compounds of lanthanides with the element fluorine (lanthanide fluorides), however, are insoluble. Adding fluoride ions to a solution of tripositive lanthanide ions can generally be used as a characteristic test for the presence of the lanthanides. Likewise, lanthanide oxalates (oxalate is the negative ion CzO4-2) have low solubility .



Isolation and production

The lanthanides occur naturally in many minerals but are most concentrated in monazite, a heavy dark sand , found in Brazil, India, Australia , South Africa , and the United States. The composition of monazite varies depending on its location, but generally contains about 50% of lanthanide compounds by weight. Like any group of elements that have similar properties and that occur in nature together, the separation and purification of the lanthanides requires considerable effort. Consequently, commercial production of the lanthanides tends to be expensive.

To separate the lanthanides from other elements occurring with them, they are chemically combined with specific substances to form lanthanide compounds with low solubility (oxalates and fluorides, for example). A process known as ion exchange is then used to separate the lanthanides from each other. In this process, a solution of the lanthanides in ionic, soluble form is passed down a long column containing a resin. The lanthanide ions "stick" to the resin with various strengths based on their ion size. The lanthanum ion, being smallest, binds most tightly to the resin, whereas the largest ion, lutetium, binds the weakest. The lanthanides are then washed out of the ion exchange column with various solutions, emerging one at a time, and so are separated. Each is then mixed with acid, precipitated as the oxalate compound, and then heated to form the oxide. A number of methods have been used to obtain the lanthanides in metallic form. For example, the oxides can be converted to fluorides or chlorides which are then reduced with calcium to metallic form.


Uses of lanthanides

Although the lanthanide elements, alloys, and compounds have many uses, less expensive alternatives functioning just as efficiently are used where possible. But despite their cost, the unique properties of the lanthanides do sometimes favor their use over cheaper substances, and millions of tons of lanthanides, in metallic, alloy , and compound form, are produced annually. One of the earliest uses involved an alloy of cerium and iron , called Auer metal, which produced a brilliant spark when struck. This has been widely used as a "flint" in cigarette and gas lighters. Auer metal is one of a series of mixed lanthanide alloys called misch metals that have a variety of metallurgical applications. These alloys are composed of varying amounts of the lanthanide metals, mostly cerium and smaller amounts of others such as lanthanum, neodymium, and praseodymium. They have been used to impart strength, hardness, and inertness to structural materials. They have also been used to remove oxygen and sulfur impurities from systems.

As catalysts (substances that speed up chemical reactions ), the lanthanides are widely used in the oil refining industry since they speed up the conversion of crude petroleum into widely used consumer products such as gasoline. The color television industry also makes extensive use of europium and yttrium oxides to produce the red colors on television screens. Other lanthanide compounds are used in street lights, searchlights, and in the high-intensity lighting in sports stadiums. The ceramics industry uses lanthanide oxides to color ceramics and glasses. Optical lenses made with lanthanum oxide are used in cameras and binoculars. Others (Pr, Nd) are used in glass , such as in television screens, to reduce glare. Cerium oxide has been used to polish glass. The lanthanides have a variety of nuclear applications. Because they absorb neutrons, they have been used in control rods used to regulate nuclear reactors. They have also been used as shielding materials, and as structural components in reactors. Some lanthanides have unusual magnetic properties. For instance, cobalt-samarium magnets are very strong permanent magnets.

See also Element, chemical.


Resources

books

Cotton, S. Lanthanides and Actinides. New York: Oxford University Press, 1991.

Emsley, John. The Elements. 3rd ed. New York: Oxford University Press, Inc., 1998.

Heiserman, D.L. Exploring Chemical Elements and TheirCompounds. Blue Ridge Summit, PA: TAB Books, 1992.

Lide, D.R., ed. CRC Handbook of Chemistry and Physics. 74th ed., Boca Raton, FL: CRC Press, 1991.

Lanthanides

views updated May 23 2018

Lanthanides

The lanthanides are the chemical elements found in Row 6 of the periodic table between Groups 3 and 4. They follow lanthanum (La), element #57, which accounts for their family name. The lanthanides include the metals cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu).

Lanthanides as rare earth elements

At one time, the lanthanides were called the rare earth elements. The name suggests that chemists once thought that the elements were present in Earth's crust in only very small amounts. As it turns out, with one exception, that assumption was not correct. (That exception is promethium, which was first discovered in the products of a nuclear fission reaction in 1945. Very small amounts of promethium have also been found in naturally occurring ores of uranium.)

The other lanthanides are relatively abundant in Earth's crust. Cerium, for example, is the twenty-sixth most abundant element. Even thulium, the second rarest lanthanide after promethium, is more abundant than iodine.

The point of interest about the lanthanides, then, is not that they are so rare, but that they are so much alike. Most of the lanthanides occur together in nature, and they are very difficult to separate from each other. Indeed, the discovery of the lanthanide elements is one of the most intriguing detective stories in all of chemistry. That story includes episodes in which one element was thought to be another, two elements were identified as one, some elements were mistakenly identified, and so on. By 1907, however, the confusion had been sorted out, and all of the lanthanides (except promethium) had been identified.

Words to Know

Alloy: A mixture of two or more metals with properties different from those of the metals of which it is made.

Catalyst: A material that speeds up the rate of a reaction without undergoing any change in its own composition.

Monazite: A mineral that constitutes the major source of the lanthanides.

Oxide: A compound containing oxygen and one other element.

Phosphor: A substance that glows when struck by electrons.

Rare earth elements: An older name for the lanthanide elements.

Occurrence

The most important source of the lanthanides is monazite, a heavy dark sand found in Brazil, India, Australia, South Africa, and the United States. The composition of monazite varies depending on its location, but it generally contains about 50 percent of lanthanide compounds by weight. Because of the similarity of their properties and their occurrence together in nature, the lanthanides can be separated from each other and purified only with considerable effort. Consequently, commercial production of the lanthanides tends to be expensive.

Properties

Like most metals, the lanthanides have a bright silvery appearance. Five of the elements (lanthanum, cerium, praseodymium, neodymium, and europium) are very reactive. When exposed to air, they react with oxygen to form an oxide coating that tarnishes the surface. For this reason these metals are stored under mineral oil. The remainder of the lanthanides are not as reactive, and some (gadolinium and lutetium) retain their silvery metallic appearance for a long time.

When contaminated with nonmetals, such as oxygen or nitrogen, the lanthanides become brittle. They also corrode more easily if contaminated with other metals, such as calcium. Their melting points range from about 819°C (1,506°F) for ytterbium to about 1,663°C (3,025°F) for lutetium. The lanthanides form alloys (mixtures) with many other metals, and these alloys exhibit a wide range of physical properties.

The lanthanides react slowly with cold water and more rapidly with hot water to form hydrogen gas. They burn readily in air to form oxides. They also form compounds with many nonmetals, such as hydrogen, fluorine, phosphorous, sulfur, and chlorine.

Uses of lanthanides

Until fairly recently, the lanthanides had relatively few applications; they cost so much to produce that less expensive alternatives were usually available. The best known lanthanide alloy, Auer metal, is a mixture of cerium and iron that produces a spark when struck. It has long been used as a flint in cigarette and gas lighters. Auer metal is one of a series of mixed lanthanide alloys known as misch metals. The misch metals are composed of varying amounts of the lanthanide metals, mostly cerium and smaller amounts of others such as lanthanum, neodymium, and praseodymium. They have been used to impart strength, hardness, and inertness to structural materials. They have also been used to remove oxygen and sulfur impurities from various industrial systems.

In recent years, less expensive methods have been developed for the production of the lanthanides. As a result, they are now used in a greater variety of applications. One such application is as catalysts, substances that speed up chemical reactions. In the refining industry, for example, the lanthanides are used as catalysts in the conversion of crude oil into gasoline, kerosene, diesel and heating oil, and other products.

The lanthanides are also used as phosphors in color television sets. Phosphors are chemicals that glow with various colors when struck by electrons. For example, oxides of europium and yttrium are used to produce the red colors on a television screen. Other lanthanide compounds are used in streetlights, searchlights, and in the high-intensity lighting present in sports stadiums.

The ceramics industry uses lanthanide oxides to color ceramics and glasses. Optical lenses made with lanthanum oxide are used in cameras and binoculars. Compounds of praseodymium and neodymium are used in glass, such as in television screens, to reduce glare. Cerium oxide has been used to polish glass.

The lanthanides also have a variety of nuclear applications. Because they absorb neutrons, they have been employed in control rods used to regulate nuclear reactors. They have also been used as shielding materials and as structural components in reactors. Some lanthanides have unusual magnetic properties. For instance, cobalt-samarium magnets are very strong permanent magnets.

[See also Element, chemical; Periodic table ]

Lanthanides

views updated May 23 2018

Lanthanides


The lanthanide or rare earth elements (atomic numbers 57 through 71) typically add electrons to the 4f orbitals as the atomic number increases, but lanthanum (4f0) is usually considered a lanthanide. Scandium and yttrium are also chemically similar to lanthanides. Lanthanide chemistry is typically that of +3 cations, and as the atomic number increases, there is a decrease in radius for each lanthanide, known as the "lanthanide contraction." Because bonding within the lanthanide series is usually predominantly ionic, the lanthanide contraction often determines the differences in properties of lanthanide compounds and ions. Lanthanide compounds often have high coordination numbers between 6 and 12.

see also Cerium; Dysprosium; Erbium; Europium; Gadolinium; Holmium; Lanthanum; Lutetium; Praseodymium; Promethium; Samarium; Terbium; Thulium; Ytterbium.

Herbert B. Silber

Bibliography

Bünzli, J.-C. G., and Choppin, G. R. (1989). Lanthanide Probes in Life, Chemical, and Earth Sciences. New York: Elsevier.

Cotton, Simon (1991). Lanthanides and Actinides. New York: Oxford University Press.

lanthanide series

views updated May 29 2018

lanthanide series (lanthanide elements, rare-earth metals) Series of 15 rare metallic elements with atomic numbers from 57 to 71. They are, in order of increasing atomic numbers: lanthanum (sometimes not considered a member), cerium, praseodymium, neodymium, promethium (the only radioactive member), samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Their properties are similar. The shiny metals occur in monazite and other rare minerals and are placed in group III of the periodic table. Each element is analogous to the corresponding radioactive actinide series.