Percoidei V (Groupers, Sea Basses, Trevallys, Snappers, Emperors, and Relatives)

views updated

Percoidei V

(Groupers, sea basses, trevallys, snappers, emperors, and relatives)

Class Actinopterygii

Order Perciformes

Suborder Percoidei

Number of families 29


Evolution and systematics

The suborder Percoidei contains more than 70 families and 2,800 species. This section on percoid fishes is widely divergent and includes the following 29 families: Ambassidae (glassfishes; Chandidae of some authors), Polyprionidae (wreckfishes), Serranidae (fairy basslets, groupers, hamlets, perchlets, sand perches, sea basses, soapfishes), Grammatidae (basslets), Callanthiidae (splendid perches), Pseudochromidae (dottybacks and eel blennies), Plesiopidae (longfins and roundheads), Glaucosomatidae (pearl perches), Opistognathidae (jawfishes), Priacanthidae (bigeyes), Apogonidae (cardinalfishes), Sillaginidae (sillagos or smelt whitings), Malacanthidae (tilefishes), Rachycentridae (cobias), Carangidae (jacks, pompanos, and trevallys), Menidae (moonfish), Leiognathidae (ponyfishes or slipmouths), Bramidae (pomfrets), Lutjanidae (snappers), Caesionidae (fusiliers), Lobotidae (tripletails), Gerreidae (mojarras), Haemulidae (grunts and sweetlips), Dinopercidae (cave basses or lampfishes), Sparidae (porgies), Lethrinidae (emperors), Nemipteridae (monocle or threadfin breams), Polynemidae (threadfins), and Sciaenidae (croakers and drums). As with other percoid fishes, these families date largely from the Lower Tertiary during the Eocene or Miocene. Fossil records from the Eocene have been discovered for the Serranidae, Pseudochromidae, Lutjanidae, Haemulidae, and Lethrinidae. The Priacanthidae dates from the Middle Eocene. The Apogonidae, Sillaginidae, Carangidae, Menidae, and Sparidae date from the Lower Eocene. The Malacanthidae and Sciaenidae date from the Miocene, and the Bramidae from the Upper Miocene. The Leiognathidae, however, dates from the Oligocene.

Diverse and speciose families include the Serranidae, with 62 genera and at least 449 species. This family is divided into three subfamilies, the Serraninae (sea basses), the Anthiinae (fairy basslets and perchlets), and the Epinephelinae, with the latter arranged into five tribes. These are the Niphonini (Japanese ara or grouper), Epinephelini (groupers and coral trouts), Liopropomini (Swissguard basslets), and the Diploprionini and Grammistini (both soapfishes). Other speciose families include the Apogonidae, with 22 genera and at least 207 species; the Carangidae, with 33 genera and 140 species; the Lutjanidae, with 17 genera and 103 species; the Haemulidae, with 17 genera and 150 species; the Sparidae, with 35 genera and 112 species; and the Sciaenidae, with 70 genera and at least 266 species.

Physical characteristics

Fishes of the family Ambassidae have perch-like bodies, a dorsal fin that is notched deeply, and a forked caudal fin. The bodies of many species are transparent or partially so. Body sizes range up to 10.2 in (26 cm) in total length, but most species are considerably smaller. The six species comprising the Polyprionidae are all large, robust grouper-like fishes with large heads and mouths, two rounded spines on the opercle, pelvic fins with one spine and 5 soft rays, and continuous lateral lines. Color patterns range from silvery to blue-gray to mottled. Body sizes range from 59 in (150 cm) to over 98 in (250 cm) in total length.

The Serranidae has considerable variation in morphology and body size. Most species have a single dorsal fin bearing spines and soft rays, small ctenoid scales, 2–3 flattened spines on the opercula, a continuous lateral line, a maxillary (upper jaw) that is exposed fully, and a lower jaw that extends beyond the maxillary. Members of the subfamily Anthiinae are rather small and quite colorful. Most water column-dwelling species have lunate caudal fins, while benthic-dwelling species tend towards caudal fins that are truncate. Males are often sexually dimorphic; that is, they are distinguished in appearance from females with regard to body size, fin elongation, and color pattern. Groupers and soapfishes (tribe Epinephelini) are usually robust, bass-like fishes, although some soapfishes are elongate and slender. Most species have large heads and mouths, well-developed spines in the dorsal fin, and caudal fins that range from truncate to emarginate, lunate, or rounded. Swissguard basslets (tribe Lioproprionini) tend to be small and slender with flattened heads, and are often colorful. Soapfishes have dermal glands that secrete a toxin that is an effective antipredator mechanism. Groupers, soapfishes, and Swissguard basslets tend to be sexually dimorphic for body size, with males being larger than females. Adult body sizes range from less than 3.9 in (10 cm) to over 118 in (300 cm) in total length.

Species of the Grammatidae tend to be small and colorful. They have an interrupted lateral line, arranged in two segments; alternately, the lateral line is absent. There are 11–13 spines in the dorsal fin and one spine and five soft rays in the pelvic fin. Body sizes are usually less than 3.9 in (10 cm) in total length. The Callanthiidae is distinguished by having an compressed, oblong-shaped body, a single dorsal fin with 11 spines and 9–10 soft rays, an opercle with 1 or 2 spines, a lateral line running along the base of the dorsal fin, and truncate, emarginate, or excessively lunate caudal fins. Most have color patterns of bright orange, yellow, and red. Adults range in size from about 3.1 in (8 cm) to over 23.6 in (60 cm). Members of the Pseudochromidae follow one of two body plans. Those in the subfamily Pseudochrominae have somewhat elongate bodies; a long, continuous dorsal fin; small scales (cycloid anteriorly and ctenoid posteriorly); and many have rather brilliant color patterns. Some species lack a lateral line while others have one that is interrupted. Most species are less than 4.3 in (11 cm) in total length. Those in the subfamily Congrogadinae are eel-like in appearance and rather drably colored. Both dorsal and anal fins are long and continuous. They reach up to 20 in (50 cm) in total length. Species in the family Plesiopidae tend to be similar in shape to those in the Pseudochromidae, except that their bodies may be deeper in some genera. The dorsal fins have considerably more spines (11 to 14), too. The dorsal, anal, and caudal fins are large and exaggerated in the genera Calloplesiops and Paraplesiops. Most species are drably colored in comparison to the pseudochromids, but some species are remarkably colorful. Body sizes are usually less than 10 in (25 cm) in total length, many much smaller.

The Glaucosomatidae resembles deep-bodied serranids or haemulids. They have 8 spines and 12–14 soft rays in the dorsal fin and 3 spines and 12 soft rays in the anal fin. The maxilla is scaled, and the lateral line is straight and reaches the caudal fin. The caudal fin is either lunate or truncate. Color patterns tend to be dull gray or silver. Some have horizontal stripes that are black or yellow in color; one species, Glaucosoma hebraicum as a juvenile, has a distinctive black chevron stripe on the head and through the eye. Adults range from 15.7 in (40 cm) to over 47 in (120 cm) in total length. The Opistognathidae is recognized by having elongate, slender, or tapering bodies (although some are larger and robust), an enlarged head, large eyes, a continuous dorsal fin with 9 to 12 spines, pelvic fins placed ahead of the pectoral fins, and a lateral line that runs just under the dorsal fin and terminates halfway along the body. The scales are cycloid and the head is scaleless. Body sizes range up to 20 in (50 cm) in total length, but many species are much smaller. Members of the family Priacanthidae have deep, compressed bodies with very large eyes, a large, obliquely positioned mouth, a lower jaw that projects outward, rough scales, and scales on the head. Color patterns are usually red or coppery red and can be changed behaviorally to silver or mottled red and silver. Adults range in size to over 20 in (50 cm) in total length, but most species are less than 12 in (30 cm) long. Fishes of the family Apogonidae are generally small and compressed laterally, although some are elongate in shape. There are two dorsal fins, the first with 6–8 spines and the second comprised of soft rays. The anal fin has 2 spines. The mouth is relatively large and placed obliquely. The eyes are also large and adapted for low light conditions. Many species are colorful, but some are nearly transparent with faint shades of red, yellow, silver, or bronze. Adults range in size up to 10 in (25 cm) in total length, but the majority of species are considerably smaller.

The Sillaginidae is distinguished by having elongate bodies with two dorsal fins, the first bearing 10–13 spines and the second a single spine and 16–27 soft rays. The anal fin is elongate, with two spines and 14–26 soft rays. Color patterns tend to be silvery, white, or tan to match the color of the sea bottom. Fishes of the family Malacanthidae follow two body plans. Those in the genera Hoplolatilus and Malacanthus have relatively slender, elongate bodies with slightly rounded or pointed heads, truncate or somewhat-forked caudal fins, continuous dorsal fins, small scales that are largely ctenoid, and one spine or the opercle. Hoplolatilus species are often quite colorful, while Malacanthus tend to be striking despite coloration limited to black, white, some blue, or pale green. Tilefishes in the genera Branchiostegus, Caulolatilus, and Lopholatilus tend to be stockier, with larger, blunter heads. Colors range from pale or drab shades of brown, bronze, and green to pink. Body sizes range up to 49 in (125 cm) in total length. The single species of Rachycentridae, Rachycentron canadum, has an elongate body and depressed head. There are 6–9 short free spines positioned ahead of the long dorsal fin. There are 1–3 spines and 26–33 soft rays in the dorsal fin and 2–3 spines and 22–28 soft rays in the long anal fin. The caudal fin is lunate, with the lower lobe shorter than the upper. The body has a pattern of three darkly colored lateral stripes along the flank and, in juveniles and young adults, a long whitish silver stripe runs dorsally from the snout to the caudal peduncle. This species grows to over 79 in (200 cm) in total length.

The Carangidae is diverse in body form. Most species have deep, compressed bodies, two dorsal fins, forked caudal fins, and slender caudal peduncles bearing bony scutes. Some species are elongate and fusiform. Colors are typically silver or gray with ornamentation in black, blue, green, olive, or yellow. The pilotfish, Naucrates ductor, is bright yellow with black vertical stripes, however. Most species are less than 39 in (100 cm) in total length, but some will grow to over 98 in 250 cm). The Menidae has a disc-like body, a sharply angled, deep breast, and a nearly horizontal dorsal surface. The dorsal and anal fins are spineless but bear 43–45 and 30–33 soft rays, respectively. The first pelvic fin ray of adults is elongate, and the caudal fin is deeply forked. Color is blue dorsally and

white ventrally, with 2–3 rows of dark spots along the dorsal flank down to the lateral line. The Leiognathidae is distinguished by strongly compressed bodies; small cycloid scales; gill membranes that are unified at the isthmus; a continuous dorsal fin with 8–9 spines and 14–16 soft rays; an anal fin with 3 spines and 14 soft rays; and a forked caudal fin. These fishes also possess luminous organs on the throat and the ability to secrete mucus from their skin. Members of the Bramidae are deeply compressed with long, continuous dorsal and anal fins, long pectoral fins, and forked or widely forked caudal fins. Color patterns range from silver to bronze, dull red, or black. Members of the genus Pteraclis, the fan fishes, have excessively large dorsal and anal fins that give these fishes a fan-like shape. Adults range up to 39 in (100 cm) in total length, although most species are half of that size.

Species of the Lutjanidae have ovate or elongate bodies that are compressed moderately. The single dorsal fin is notched with 10 spines and 8–18 soft rays. The anal fin has 3 spines and 7–11 soft rays. The caudal fin is either truncate, emarginated, or forked deeply. Color patterns are highly variable. Most species are less than 39 in (100 cm) in total length, but some will grow to over 59 in (150 cm). The colorful Caesionidae is distinguished by slender and rather streamlined bodies, with small mouths and a protrusible upper jaw. There is a single dorsal fin with 9–15 spines and 9–21 soft rays. The anal fin has 3 spines and 9–13 soft rays. The caudal fin is forked deeply. Color patterns range from blue to silvery blue, with yellow, pink, or red accents. Most species are less than 23.6 in (60 cm) in total length. The single species of Lobotidae, Lobotes surinamensis, has an oval or oblong and compressed body, a single dorsal fin with 11–12 spines and 15–16 soft rays, an anal fin with 3 spines and 11–12 soft rays, and 17 soft rays in the pectoral fin. The dorsal, anal, and caudal fins are all rounded. The scales are ctenoid. Adults are dark brown or greenish yellow along the back, and silverfish gray along the flanks; juveniles tend to be brown and yellow, and are usually mottled. This species grows to about 39 in (100 cm) in total length.

Members of the Gerreidae are silvery in color, have moderately deep and compressed bodies, a head that is concave in profile ventrally, and protractile mouths. The scales are ctenoid and large, and the caudal fins are forked. Most species are less than 14 in (35 cm) in total length. The Haemulidae resembles the Lutjanidae in body shape, but a number of species tend to be more robust; have smaller mouths, thicker lips, and conical teeth; and lack canines. Their dorsal fins are continuous with 9–14 spines and 11–26 soft rays, and the anal fins are much shorter with 3 spines and 6–18 soft rays. The caudal fins are truncate to slightly emarginate. Color patterns are variable. Most species are less than 23.6 in (60 cm) but some grow to at least 39 in (100 cm) in total length. The Dinopercidae is distinguished by an oval, compressed body, a protruding lower jaw, a continuous dorsal fin with 9–11 spines and 18–20 soft rays, an anal fin with 3 spines and 12–14 soft rays, and a truncate caudal fin. Scales are ctenoid and cover the body, head, and fins. Color patterns range from a dull blackish brown with white specks to a barred pattern of alternating dark and whitish colors. Size ranges of adults are from 12 in (30 cm) to over 30 in (75 cm) in total length. The diverse Sparidae is snapper-like in appearance, with compressed oblong or ovate bodies, a dingle dorsal fin with 10–13 spines and 8–15 soft rays, an anal fin with 3 spines and 8–14 soft rays, a forked or emarginate caudal fin, weakly ctenoid scales, scaly cheeks and opercula, and conical, incisiform or molar teeth. Color patterns are variable but often have a metallic sheen. Adult body sizes range from about 12 in (30 cm) to over 79 in (200 cm) in total length. The Lethrinidae resembles both the Lutjanidae and Haemulidae in appearance. There are 10 spines and 9–10 soft rays in the dorsal fin and 3 spines and 8–10 soft rays in the anal fin. The caudal fin is emarginate or forked. The lips are thick, the mouth terminal, and the front of the jaws support canine teeth while conical or molariform teeth are positioned along the side of the jaws. Color patterns are largely drab in most species, ranging from gray to silvery gray, olive, yellow, or brown. Some are distinctively black or yellow and have red, blue, black, yellow, or white markings or stripes. Adult body sizes range from about 12 in (30 cm) to over 39 in 100 cm) in total length.

Fishes of the family Nemipteridae have slender or ovate bodies, 10 spines and 9–10 soft rays in the dorsal fin, 3 spines and 7–8 soft rays in the anal fin, and forked caudal fins. Their eyes are relatively large. Color patterns are variable and often bright and distinctive. Body sizes of most adults are less than 14 in (35 cm) in total length. The very distinctive Polynemidae is distinguished by a blunt, rounded snout, elongate body, two dorsal fins, and a deeply forked caudal fin. The unusual pectoral fin has a detached lower portion consisting of 3–7 free rays that may be used to detect prey in turbid water. Color patterns tend to be, for the most part, drab shades of olive and silver. Adults can grow up to 71 in (180 cm) in total length. The highly diverse Sciaenidae has long notched dorsal fins, with 6–13 spines in the anterior portion and 1 spine and 20–35 soft rays in the anterior portion. There are 1–2 weak spines and 6–13 soft rays in the anal fin. The caudal fins are mainly emarginate or rounded. Color patterns vary from silvery white or gray to light brown, yellow, pale pink, or pale blue. Some species, such as those in the genus Equetus, are striking, however. Adult sizes range from less than 3.9 in (10 cm) to over 79 in (200 cm) in total length.

Distribution

The Ambassidae occurs in tropical and subtropical marine, brackish, and fresh waters of the Indo-West Pacific; freshwater species are especially prominent in Australia, India, and Southeast Asia. The Polyprionidae has a scattered distribution in temperate and subtropical waters of the Atlantic, Indian and Pacific Oceans. The Serranidae is distributed in tropical, subtropical, and temperate waters of the Atlantic, Pacific, and Indian Oceans; some species occur in freshwater. The Grammatidae is limited to tropical and subtropical waters of the western Atlantic and western Pacific Oceans. The Callanthiidae occurs in temperate, subtropical, and tropical waters of the eastern Atlantic, including the Mediterranean, and the Indian and Pacific Oceans. The Pseudochromidae occurs in tropical marine, rarely brackish, waters of the Indo-Pacific region. The Plesiopidae is found in tropical and subtropical waters of the Indian and Pacific Oceans. The Glaucosomatidae appears to be a continental family that ranges from Western Australia east to Japan. Both the Opistognathidae and the Priacanthidae occur in tropical and subtropical waters of the Atlantic, Indian, and Pacific Oceans. Fishes of the family Apogonidae are mainly marine in the tropical and subtropical Atlantic, Indian, and Pacific Oceans, but some species occur in fresh or brackish waters in the western Pacific. The Sillaginidae is distributed in tropical and warm temperate coastal and estuarine waters of the Indo-West Pacific, from Africa east to Australia and New Caledonia, and north to Japan. Most species are continental, and at least one species has entered the eastern Mediterranean via the Suez Canal. The Malacanthidae occurs largely in tropical and warm temperate waters of the Atlantic, Indian, and Pacific Oceans; one species occurs in brackish and marine waters of New Guinea, however. The Rachycentridae is found in marine and, to a lesser extent, brackish waters of the tropical, subtropical, and temperate continental waters of the Atlantic, Indian, and Pacific Oceans, and are absent from most insular localities on the Pacific Plate. The Carangidae is widely distributed in tropical, subtropical, and warmer temperate waters of the Atlantic, Indian, and Pacific Oceans; some species will enter brackish and coastal rivers. The Menidae is distributed in the Indo-West Pacific, but limited from the east coast of Africa east to Indonesia and Southeast Asia. The Leiognathidae is distributed in coastal waters of the Indo-West Pacific; one species has entered the Mediterranean Sea via the Suez Canal, however. The Bramidae occurs in deeper oceanic waters of the tropical and temperate Atlantic, Indian, and Pacific Oceans. The Lutjanidae is found mainly in tropical and subtropical waters of the Atlantic, Indian, and Pacific Oceans, but some species also enter brackish and freshwater reaches; at least one species has been introduced successfully into freshwater lakes in Australia. The Caesionidae is distributed in tropical and subtropical waters of the Indo-West Pacific. The Lobotidae occurs in pelagic and coastal waters of the tropical Atlantic, Indian, and Pacific Oceans. The Gerreidae is found in coastal tropical and subtropical marine and, to a lesser extent, brackish waters of the Atlantic, Indian, and Pacific Oceans. Most species in the family Haemulidae occur in tropical and subtropical regions of these oceans as well, but some species also occur in brackish and coastal fresh waters. The Dinopercidae is restricted to warm temperate and subtropical localities of the western Indian Ocean and in the southeastern Atlantic off the coast of southern Africa from Angola to South Africa. The Sparidae is distributed largely in continental marine waters of the tropical and temperate Atlantic, Indian, and Pacific Oceans, but is also rare in fresh and brackish water. With one exception, the Lethrinidae is limited to tropical and subtropical waters of the Indian and Pacific Oceans. A single species occurs off West Africa in the Atlantic Ocean. The Nemipteridae is found in the tropical and subtropical Indo-West Pacific. The Polynemidae is found in tropical and warm temperate marine, brackish, and freshwaters of the Atlantic (including the Mediterranean Sea), Pacific, and Indian Oceans. The Sciaenidae occurs in tropical, subtropical, and temperate waters. Most species are found in marine or brackish waters of the Atlantic, Indian, and Pacific Oceans, but some occur in freshwater drainages with current or historical connections to the sea.

Habitat

The Ambassidae occurs in coastal marine, brackish, and fresh waters, mainly in protected areas with overhanging or emergent vegetation, such as mangroves; swamps, ponds, ditches, billabongs, creeks, and deep holes in rivers are among the freshwater habitats where these fishes may be found. The Polyprionidae frequents deep slope rocky reefs and pinnacles, rock bottoms, or sand flats and kelp beds at depths of 16–1,968 ft (5–600 m), or more, depending upon the species. These fishes also associate with shipwrecks, and at least one species has been found inhabiting structure around a deep water thermal vent system.

The Serranidae, owing to its great diversity, frequents a wide variety of habitats in tropical and temperate marine, brackish, and freshwaters. Many species are found on seaward or protected coral or rocky reefs, often hiding in caves, holes, and crevices, under corals and ledges. Some species hover above some form of structure or swim actively in the water column. Some frequent sand, mud, rubble, mangrove, sea grass, or algal flats in estuaries and rivers, as well as on reefs. Others, such as most fairy basslets (subfamily Anthiinae), hover over deep slopes or pinnacles on reefs. Soapfishes (tribe Grammistini) and Swissguard basslets (tribe Liopropomini) are often associated with caves, crevices, or holes. Depth ranges vary, depending upon the species, from one to over hundreds of meters.

The Grammatidae lives in close association with structure, mainly holes and corals on coral reefs at depths down to over 1,198 ft (365 m); most species are found below 98 ft (30 m). The Callanthiidae prefers coral and rocky reef habitats at depths usually greater than 66 ft (20 m). The Pseudochromidae is often associated with structure on coral reefs, usually in holes, tubes, or caves, under rocks and corals, or in crevices, but some species may also be found on rubble flats. One species of eel-blenny (subfamily Congrogadinae) lives among sea urchin spines. Depth ranges vary from one to over 180 ft (55 m). The Plesiopidae is also found among holes, under rocks, and in caves but, these fish emerge at night to move along the bottom. The Glaucosomatidae occurs on deeper offshore rocky reefs, hard flat bottoms in deeper water, and possibly coral reefs as well. Depth ranges are 33 ft (10 m) to well over 656 ft (200 m). The Opistognathidae excavates burrows in sand and gravel on coastal reefs and flats.

The Priacanthidae dwells among rocks or corals on seaward coral and rocky reefs, occasionally on deeper flats, at depths of a few to over 656 ft (200 m). The highly diverse Apogonidae utilizes an equally diverse array of habitats. A number of species associate with structure, usually branching or eroded corals and rocks, on coral and rocky reefs. Others frequent holes, caves, crevices, ledges, rubble, silty or sandy bottoms, algal beds, sea grasses, mangroves, sponges, and even sea urchin and crown-of-thorns starfish spines. Still others occur in estuaries, rivers, creeks, ponds, and lakes, usually in association with structure. Depending upon the species and habitat, depths range from 3 ft (1 m) to over 262 ft (80 m). The Sillaginidae is found in shallow coastal waters, usually over sand or mud flats, and often along beaches; some species enter estuaries. The Malacanthidae may be found on coral and rocky reefs, deep sand and rubble flats, and, at least for one species, in shallow brackish water habitats. Depths range from 33 ft (10 m) to 1,640 ft (500 m), but most species occur in less than 656 ft (200 m) of water. The Rachycentridae swims in the pelagic water column but is also associated with structure, such as oil or sulfur drilling platforms, offshore piers, and drifting logs. The Carangidae is associated with a variety of coral and rocky reef habitats that range from sand, rubble, mud, algal and sea grass flats, boulder fields and old lava flows, and the water column inshore and in the open ocean. Some species enter estuaries and rivers or brackish water ponds. Depth ranges vary from 3 ft (1 m) to over 656 ft (200 m). The Menidae is found on inshore sand and mud flats, off deeper coral reefs, or in estuaries. The Leiognathidae frequents inshore sand and mud flats; some species enter freshwater. The Bramidae is pelagic, dwelling on deep-slopes and shelves, and is usually found at depths of over 656 ft (200 m).

The Lutjanidae is found mainly on seaward or protected coral and rocky reefs, usually in association with coral formations and rocks, but also hovering in the water column. Other species frequent sea grass, algal, rubble, and sand flats. A few species occur in estuaries, and one species ranges from marine to freshwaters, where it shelters in mangroves or similar kinds of emergent vegetation. Deep water species are associated with pinnacles. Depth ranges are from 3 ft (1 m) to over 1,476 ft (450 m). The Caesionidae swims in the water column over coral reefs, especially along outer slopes and lagoon pinnacles. The Lobotidae occurs in two widely divergent habitats. Juveniles and smaller adults may be found in the open sea, often around floating vegetation, flotsam, and jetsam. Alternately, these fishes may also be found on inshore flats and estuaries. The Gerreidae frequents inshore sand and mud flats, and may enter brackish or freshwater on occasion. The Haemulidae may be found on coral and rocky reefs, where they shelter near or under ledges. Some species are also found in brackish and freshwater. Members of the Dinopercidae are found in association with rocky and coral reefs, usually in caves or under ledges, to a depth of about 164 ft (50m); juveniles may be found around rocky shorelines. The Sparidae is found on coral and rocky reefs, rubble and sand flats, or, rarely, in brackish and freshwater habitats. The Lethrinidae and the Nemipteridae also frequent coral and rocky reefs, as well as rubble, sand, and sea grass flats. The Polynemidae can be found on mud and sand flats in marine and brackish water, although some species also occur in similar habitats in rivers. The Sciaenidae inhabits a variety of habitats including mud, sand, and rubble flats and beaches, shell reefs, coral and rocky reefs, and flooded salt marshes. Some species may also be found in freshwater rivers and lakes. Depth ranges vary from 3 ft (1 m) to over 328 ft (100 m).

Feeding ecology and diet

The Ambassidae preys upon benthic invertebrates; freshwater species will also feed upon aquatic and terrestrial insects, and algae. Feeding activity occurs during the night and, to a lesser extent, during the day. Predators include larger fishes, wading and diving birds, and, in freshwater habitats, reptiles. The Polyprionidae feeds upon benthic fishes, cephalopods, and large crustaceans. Predators are likely larger fishes that feed upon juveniles, but some toothed whales, including sperm whales, prey upon adults. Many members of the Serranidae are predators upon smaller fishes, crustaceans, and cephalopods. Others, particularly members of the subfamily Anthiinae, are planktivores that feed upon zooplankton in the water column. Larger fishes, including sharks and even other serranids, are predators upon these fishes. With the exception of the anthiines, most predation likely takes place upon juveniles, however. The Callanthiidae feeds upon zooplankton, mainly crustaceans. Predators of juveniles and adults include larger fishes that forage in the water column during daylight. The Pseudochromidae and Plesiopidae feed upon benthic invertebrates and small fishes. They likely fall prey to benthic ambush predators such as groupers and scorpionfishes. The Glaucosomatidae feeds upon smaller fishes, crustaceans, and cephalopods. Members of this family may be preyed upon by larger fishes; juveniles are likely to be more susceptible. The Opistognathidae feeds upon benthic invertebrates but also plucks zooplankton out of the water column. Predators of adults likely include ambush predators such as groupers, and possibly moray eels and sea snakes that investigate their burrows.

Fishes of the family Priacanthidae are nocturnal predators that feed upon both invertebrates and smaller fishes. In turn, they likely fall prey to larger predatory fishes. The Apogonidae feeds mainly upon zooplankton or benthic invertebrates, usually at night, but members of the genus Cheilodipterus are predatory upon smaller fishes as well. Predators of apogonids are usually larger ambush and foraging fishes such as groupers, scorpionfishes, and trevallys. Members of the Sillaginidae feed upon benthic invertebrates that they take from sand or other soft sediments. Predators include larger roving predatory fishes. The Malacanthidae feeds upon benthic invertebrates or zooplankton. Members of this family are likely preyed upon by larger fishes, especially when young. The Rachycentridae feeds upon smaller fishes, cephalopods, and crustaceans in the water column or around structure. Juveniles are probably more susceptible to predation from other pelagic fishes than adults, although sharks might prey upon the latter. Most members of the Carangidae are swift-moving predators of smaller fishes, crustaceans, and cephalopods. Some species feed exclusively in the pelagic realm, while most others feed on benthic or epibenthic prey. Members of the genus Decapterus strain zooplankton from the water column. Juvenile Scomberoides feed on the scales of inshore fishes such as mullets (Mugiloididae). The pilotfish, Naucrates ductor, accompanies sharks and feeds upon scraps leftover by these predators. This, and some other species in this family, will also swim alongside rays while foraging opportunistically for prey disturbed by the rays' movements. Carangids, especially juveniles and smaller species, are preyed upon by larger fishes and may also fall prey to some dolphins or other smaller toothed-whales.

Both the Menidae and Leiognathidae forage upon benthic invertebrates, although members of the latter family may also feed upon larger zooplankton in the water column at night. They may be preyed upon by larger fishes, such as sharks and mackerels. The Bramidae feeds upon small fishes, large planktonic crustaceans, and cephalopods in the water column. Larger pelagic fishes likely prey upon them in return. Most species of Lutjanidae are predatory upon smaller fishes, crustaceans, mollusks, or worms. A number are planktivores, however. Members of this family are susceptible to predation by larger fishes, especially when juveniles or young adults. The Caesionidae feeds in schools or aggregations upon zooplankton in the water column. Larger pelagic or epibenthic fishes are their predators. The Lobotidae feeds upon benthic crustaceans and small fishes inshore or near floating objects and Sargassum patches in the open sea. Members of this family often float sideways to mimic plant life, such as leaves or fronds, and then ambush their prey. Juveniles are probably more susceptible to predation than adults, although the latter may be preyed upon when drifting near the surface by pelagic predators. Members of the Gerreidae use their protrusible mouths to root out, sort, and feed upon benthic invertebrates from sand or other soft sediments. They are preyed upon by larger roving or ambush predatory fishes. Members of the family Haemulidae are accomplished at feeding upon hard-shelled benthic invertebrates such as mollusks and crustaceans, but some species also feed upon smaller fishes and benthic worms. Juveniles are likely to be more susceptible to predation than adults in the larger species; otherwise, larger fishes are their chief predators. The Dinopercidae also feeds upon benthic invertebrates and possibly smaller fishes. Their predators are doubtless larger fishes, and juveniles are more likely to be preyed upon than adults. The Sparidae usually feeds upon hard-shelled benthic invertebrates (mollusks and crustaceans). Their main predators are probably larger fishes.

The Lethrinidae usually feeds at night upon smaller fishes and benthic invertebrates that range from crustaceans and mollusks to polychaete worms, tunicates, and starfishes and their relatives. Larger fishes, including roving and ambush predators, are their likely predators, and juveniles are probably more susceptible to predation than adults. The Nemipteridae also has a variable diet, for these fishes feed upon crustaceans, polychaete worms, cephalopods, or small fishes; some species feed upon zooplankton. Members of this family are preyed upon by larger fishes. The Polynemidae sifts through soft sediments with elongated pelvic fin rays in search of benthic invertebrates and small fishes. Larger fishes such as sharks, and, depending upon the locality, large carnivorous reptiles such as estuarine crocodiles likely prey upon these fishes. Juveniles probably fall prey to ambush or roving predatory fishes such as flatheads (Platycephalidae) and trevallys (Carangidae). The Sciaenidae consists of benthic predators of small fishes, crustaceans, and other benthic invertebrates. Their predators range from larger fishes to wading birds.

Behavior

The Ambassidae gathers in aggregations, some times quite large, under shelter. At night, these fishes become active and disperse as they feed. Fishes of the family Polyprionidae are probably territorial and patrol rather large home ranges. Within the Serranidae, the subfamilies Serraninae and Epinephelinae are largely solitary and territorial. Species that form haremic mating systems have multiple territories within that of a single male. Most species make good use of shelter or the bottom, from where they can avoid predation and also ambush prey. Some species are active swimmers in the water column, however. Many fairy basslet species (Anthiinae) aggregate in the water column but seek shelter on the bottom or against the faces of steep reef slopes, while others move, often cryptically, along the bottom. Males are territorial. Soapfishes (Diploprionini and Grammistini) and Swissguard basslets (Liopropomini) hover or rest in caves and holes, although some species move freely through the water column just above the bottom. These fishes seem to be more active at night. The Callanthiidae hovers in the water column singly or in groups, but the Grammatidae, Pseudochromidae, and Plesiopidae all tend to hide in holes, under rocks or corals, or in some other form of shelter, where they wait to ambush prey. Many colorful pseudochromids hover outside of their shelters, however. The Plesiopidae forages outside of shelter at night as well. Fishes in these families tend to be territorial. The behavior of the Glaucosomatidae is not well known. Members of this family shelter in caves or holes when approached and are likely to patrol a territory or home range. Adults and juveniles tend to move to shallower waters seasonally during cooler months. Jawfishes (Opistognathidae) excavate burrows with their large mouths and use them for shelter and nesting sites. When not in a burrow, they may be seen hovering above it in the water column; they enter the burrow tail first.

The Priacanthidae and the Apogonidae generally associate with structure during daylight but move into the water column to forage at night. Their relatively large eyes are used to detect both prey and predators. The Sillaginidae forages singly or in aggregations on sand or mud bottoms. The Malacanthidae lives singly, in pairs, or in haremic social groups and excavates burrows in the sand, where these fishes live when they are not hovering in the water column. Some of these burrows are distinguished by rather large mounds of rubble. The Rachycentridae is active in open water but will associate with structure. The Carangidae moves singly, in pairs or small aggregations, or in large schools either along the bottom or up in the water column. The Menidae forages in schools. The Leiognathidae forms schools and forages over the bottom during daylight; at night, these fishes move into the water column and may communicate with one another (directly or indirectly) by light flashes generated by bioluminescent organs on their throats.

Little is known about the behavior of the Bramidae because of the depths in which they live. Presumably, they form aggregations or schools that move up and down in the water column during night and day, respectively, as they follow their prey. The Lutjanidae hides under shelter, hovers in the water column, or forms aggregations that move lazily over the bottom. Some species are territorial and others patrol home ranges. The Caesionidae forms aggregations or schools that swim actively in the water column. A number of species appear to be able to change their color patterns behaviorally. Lobotidae juveniles and young adults often swim on their sides and hover under floating vegetation or logs, and may mimic leaves as well. Adults tend to be solitary. The Gerreidae forms small or large aggregations and forages actively along the bottom. The Haemulidae, depending upon the species, occurs singly or forms small or large aggregations. Members of this family seek shelter under ledges or in large holes during daylight but forage after dark. Alternately, they may form aggregations that swim lazily along the reef. Some aggregating species make daily migrations at dawn and dusk, and knowledge of the paths of these migration routes is transmitted culturally within social groups. The Dinopercidae shelters during daylight but likely moves about after dark. Members of this family can make a drumming sound by contracting muscles; the sound of the contraction is amplified by the swim bladder. The Lethrinidae moves singly, in small aggregations, or in large schools along the bottom; some species swim or hover up in the water column. The Nemipteridae either swims singly or in aggregations well up in the water column, rather like the Caesionidae, or these fishes dart about or hover alone or in groups just above the bottom. The Polynemidae swims just above the bottom, and these fishes use their specialized pelvic fins to detect prey as they forage. Their behavior is not well known. The Sciaenidae occurs singly or in groups, sometimes large aggregations, and members of the family swim actively along the bottom as they search for prey. As with the Dinopercidae, these fishes can communicate by the production of drumming sounds. Their hearing is well developed, too, which is useful for detecting prey, predators, and conspecifics (other members of the same species).

Reproductive biology

The Ambassidae spawns demersal eggs that are scattered on vegetation in freshwater; in marine and brackish waters, these fishes appear to spawn pelagic eggs. The larvae are pelagic, although those of freshwater species hold close to shelter. Some species of the Polyprionidae reportedly aggregate to spawn during summer months. Their eggs and larvae are pelagic. Details about deep-dwelling species are largely unknown, but it is assumed that they have a similar life history pattern. The reproductive behavior and ecology of the Serranidae is complex owing to the diversity of taxa within this family. Serranine fishes are hermaphroditic, but unlike other serranids this hermaphroditism is simultaneous rather than sequential. Thus, mature fishes can produce both eggs and sperm simultaneously. Courtship in these fishes may involve considerable ritual, as in the hamlets (Hypoplectrus), or virtually none at all, as in the genus Serranus. In the latter case, it has been hypothesized that a rapid spawning ascent without much visible courtship is a mechanism that prevents rivals from parasitizing spawning events by sneaking or streaking during the spawning rush. Sometimes, however, triad or group spawning occurs. Eggs and larvae of these fishes are probably pelagic. Anthiine fishes include protogynous hermaphrodites, small single-male or larger multi-male haremic mating systems, pelagic spawning, and pelagic eggs and larvae. Courtship and spawning begin around sunset. Spawning is seasonal at higher latitudes but may spawn nightly at low latitudes. Epinepheline fishes include protogynous hermaphrodites (sex change from male to female) and secondary gonochorists (primary males within the same species). Mating systems may be haremic (e.g., in the genus Cephalopholis or in smaller Epinephelus species) or in pairs or groups within spawning aggregations (e.g., larger Epinephelus or Plectropomus species). At low population densities, some aggregating species appear to have haremic mating systems. Courtship usually commences prior to sunset with spawning after sunset and into darkness. Spawning, eggs, and larvae are pelagic. Little is known about the reproductive biology of soapfishes (tribes Diploprionini and Grammistini) and Swissguard basslets (tribe Liopropomini). They may be either protogynous hermaphrodites or secondary gonochorists (derived from hermaphroditic ancestors). Mating systems may be monogamous or haremic. Spawning is presumed to be pelagic, as are the eggs and larvae.

Little is known about the reproductive behavior of the Callanthiidae. Eggs and larvae are pelagic, however. Members of the Pseudochromidae are demersal spawning fishes. Females lay a ball of eggs that are fertilized and then guarded by males; alternately, some species are mouthbrooders. The Plesiopidae spawns demersal eggs on the undersides of rocks; alternately, they are mouthbrooders. Eggs are bound together into a small mass by chorionic filaments. The Glaucosomatidae do not change sex. Although the details of this family's reproductive biology are not well known, courtship and spawning are pelagic and eggs are broadcast over the bottom. Larvae are pelagic. In western Australia, one species spawns through the summer. The Opistognathidae practices mouth-brooding and cares for a ball or small mass of eggs that is tightly bound together by chorionic filaments. Although the details of courtship and spawning are largely unknown, the Priacanthidae may spawn in aggregations and produce pelagic eggs and larvae. Most species of Apogonidae are mouth-brooders. Eggs are spherical or spindle-shaped and range in size depending upon the species, and the larvae disperse (albeit poorly in a number of species) pelagically. The larvae of one species, the Banggai cardinalfish, Pterapogon kauderni, do not disperse; this life history trait explains this species' limited geographical distribution.

The Sillaginidae spawns pelagically, producing pelagic eggs and larvae; some species have been cultured artificially. The Malacanthidae has a mating system of either monogamy or haremic polygyny (one male and multiple females). Spawning is pelagic, as are the eggs and larvae. Little is known of the reproductive biology of the Rachycentridae. Spawning is presumed to be pelagic. Spawning aggregations have been reported for some species of Carangidae, and this trait may likely be true throughout the family. Eggs and larvae are pelagic. The spawning mode of the Menidae is unknown but is presumed to produce pelagic eggs and larvae. Details about spawning behavior of the Leiognathidae are also few, but pelagic eggs and larvae are produced. Little is known about reproduction in the Bramidae. Presumably, members of the family have pelagic eggs and larvae. Spawning aggregations have also been reported for the Lutjanidae and the Caesionidae. Courtship and spawning usually takes place near dusk. Some species reportedly do this in groups that split off from the main aggregation and spawn in the water column. Eggs and larvae are pelagic. The reproductive biology of the Lobotidae is not well known, but it is assumed that spawning, eggs, and larvae are all pelagic. The Gerreidae spawns either pelagically or by scattering eggs over the bottom. Some species form spawning aggregations over sand late in the afternoon during periods around the full moon. Their larvae are pelagic. Some Haemulidae have been observed forming spawning aggregations around the new moon in late spring. Spawning, eggs, and larvae are also pelagic. The Dinopercidae likely also spawn pelagically; little is known of their reproductive biology.

The reproductive biology of the Sparidae is complex. Many species are hermaphroditic, changing from one sex to the other with growth, while others are simultaneously so. Most species spawn pelagic eggs but some deposit demersal eggs in nests. The larvae are pelagic. The Lethrinidae include a number of species that are protogynous hermaphrodites. Spawning aggregations have been reported for some species, with courtship commencing after sunset. Spawning for many species occurs at peaks around the new moon and also seasonally. Spawning is pelagic, as are the eggs and larvae. Protogynous hermaphroditism has also been reported for the Nemipteridae. Spawning, eggs, and larvae are also pelagic. The reproductive biology of the Polynemidae is largely unknown. These fishes appear to be pelagic spawners; their eggs and larvae are pelagic. Although considerable effort has been devoted to the study of the eggs and larvae of the Sciaenidae (mainly for aquaculture purposes), surprisingly little is known about their reproduction in nature. A number of species are known to form spawning aggregations during summer and well into late autumn at lower latitudes. Males often produce drumming noises during courtship of females. Spawning is known to be pelagic for these species, as are their eggs and larvae, but other species have larvae, and perhaps eggs and spawning, that are demersal.

Conservation status

The 2002 IUCN Red List categorizes numerous species from these families as Critically Endangered (5 species), Endangered (3 species), or Vulnerable (12 species). In addition, fishes important to commercial (food and aquarium), subsistence, and recreational fisheries, either as target species or as bycatch, are vulnerable to overfishing.

Significance to humans

Members of the following families are important commercial, recreational, and subsistence fisheries species: Ambassidae, Polyprionidae, Serranidae, Callanthiidae, Glaucosomatidae, Priacanthidae, Apogonidae, Sillaginidae, Malacanthidae, Rachycentridae, Carangidae, Menidae, Leiognathidae, Bramidae, Lutjanidae, Caesionidae (also used as bait in tuna fisheries), Lobotidae, Gerreidae, Haemulidae, Dinopercidae, Sparidae, Lethrinidae, Nemipteridae, Polynemidae, and Sciaenidae. Species important in the aquarium trade include members of the following families: Ambassidae, Serranidae, Grammatidae, Callanthiidae, Pseudochromidae, Plesiopidae, Opistognathidae, Apogonidae, Malacanthidae, Lutjanidae, Caesionidae, Haemulidae, Sparidae, Lethrinidae, Nemipteridae, and Sciaenidae. Some species within a few families are also cultured for food or for release in the wild to enhance recreational fisheries (e.g., Serrandiae, Sillaginidae, Lutjanidae, and Sparidae). Others, particularly larger individuals of certain species, have been implicated in cases of ciguetara poisoning in humans.

Species accounts

List of Species

Pajama cardinalfish
Crevalle jack
Bluestriped grunt
Humpnose big-eye bream
Northern red snapper
Goggle eye
Nassau grouper
Sixline soapfish
Blacksaddled coral grouper
Red drum

Pajama cardinalfish

Sphaeramia nematoptera

family

Apogonidae

taxonomy

Sphaeramia nematoptera (Bleeker, 1856), Manado, Sulawesi (Celebes), Indonesia.

other common names

English: Coral cardinalfish, polka-dot cardinalfish; Japanese: manjû-ishimochi; Malay: Capungon; Tagalog: Suga.

physical characteristics

Body somewhat deep with large eyes; large, extended fins; and a slightly forked caudal fin. The skin has bioluminescent bands. There are two dorsal fins; the first has 7 spines and the second 1 spine and 9 soft rays. The anal fin has 2 spines and 9 soft rays. There are 12–14 soft rays on the pectoral fin. The head and gills are yellow that grades into a broad brown band that extends from the dorsal fin to the posterior portion of the pelvic fin. Posterior to the band, the body is a pale luminescent white with numerous brown spots. The second dorsal fin, anal fin, and caudal fin are clear but edged with luminescent white. The anterior portion of the pelvic fin is yellow and the eye is bright red. This species is sexually dimorphic for body size, with females slightly larger on average but males with deeper bodies and larger heads. Grows to 3.1 in (8 cm) in total length.

distribution

Western Pacific, from Java, Indonesia, east to New Guinea, Palau, and Pohnpei in the Caroline Islands, and north to the Mariana and Ryukyu islands.

habitat

Usually found in protected bays, lagoons, and backreefs among the branches of Porites corals.

feeding ecology and diet

Feeds upon plankton in the water column. Preyed upon by larger roving and ambush predatory fishes.

behavior

Aggregates in coral branches during daylight and disperses along the bottom at night.

reproductive biology

Not well known in nature. May possess a promiscuous mating system with multiple spawning events during a season. Males incubate the eggs orally. The incubation period varies with water temperature; eggs of a congener hatched after eight days at water temperatures of 80–86° F (27–30° C). The larvae are pelagic. This species has also been bred in captivity.

conservation status

Not listed by the IUCN.

significance to humans

Popular in the aquarium trade.


Crevalle jack

Caranx hippos

family

Carangidae

taxonomy

Caranx hippos (Linnaeus, 1766), Carolina, United States.

other common names

English: Jack crevalle, common jack, couvalli jack; French: Carangue crevalle; Spanish: Cavalla; Portuguese: Coa.

physical characteristics

Body deeply compressed with a steep forehead, two dorsal fins, a narrow caudal peduncle, and a slender forked caudal fin. The caudal peduncle is reinforced with a series of scutes (25–42) formed from modified bone. There are 9 spines in the first dorsal fin and 19–21 soft rays in the second dorsal fin, and 3 spines and 15–17 soft rays in the anal fin. The second dorsal fin and the anal fin are both elevated. The eye has an adipose eyelid. Scales are cycloid and small. Body color is silvery to brassy, the dorsal surface olive or bluish green, and the caudal fin yellowish. There is a black spot on the gill cover at equal height with the eye. Grows to about 49 in (124 cm) in total length.

distribution

In the eastern Atlantic, from Portugal to Angola and into the western Mediterranean. In the western Atlantic, from Nova Scotia south to Uruguay and including the Gulf of Mexico; absent from the eastern Lesser Antilles.

habitat

In the lower water column on coral and rocky reefs, over mud, sand, and rubble bottoms, and into brackish estuaries, canals, and rivers.

feeding ecology and diet

Highly predatory, feeding upon smaller fishes, shrimp, crabs, and other macroinvertebrates. Juveniles may be preyed upon by larger fishes, wading birds, and sea birds, while adults may be taken by sharks or other large predatory fishes.

behavior

Forms aggregations, although larger individuals are often solitary or paired.

reproductive biology

Forms spawning aggregations at predictable locations during peak times annually, usually April thru May. Eggs and larvae are pelagic.

conservation status

Not listed by the IUCN.

significance to humans

Highly prized as a game fish but also harvested by commercial and subsistence fisheries; also collected for display in larger aquaria. May be ciguatoxic in some areas.


Bluestriped grunt

Haemulon sciurus

family

Haemulidae

taxonomy

Haemulon sciurus (Shaw, 1803), Antilles, Caribbean.

other common names

English: Golden grunt, yellow grunt; French: Gorette catire; Spanish: Ronco catire; Dutch: Neertje; Portugese: Biquara.

physical characteristics

Typically perch or bass-like; the body color is yellow with a series of blue stripes that run from the head to the caudal peduncle. Fins are yellowish, except for the posterior portion of the dorsal fin and also the caudal fin, which are black. The caudal fin margin may be yellow. There are 12 spines and 16–17 soft rays in the dorsal fin, and 3 spines and 9 soft rays in the anal fin. The caudal fin is emarginate. Grows to about 18 in (46 cm) in total length.

distribution

Western Atlantic, from Florida south to northern Brazil, west through the Gulf of Mexico and throughout the Caribbean.

habitat

Juveniles are found in Thalassia sea grass beds. Adults occur over coral and rocky reefs and near drop-offs. Depth range is 3–98 ft (1–30 m).

feeding ecology and diet

Mainly nocturnal predators of crustaceans, bivalves, and small fishes.

behavior

Forms small groups that migrate twice daily along predictable routes at dawn and dusk. Knowledge of the locations of these routes has been demonstrated to be transmitted culturally by older fishes to younger ones in a related species.

reproductive biology

Little is known. Likely forms spawning aggregations at predictable locations annually (autumn through spring, probably around the full moon); spawning is doubtless pelagic, as are the eggs and larvae.

conservation status

Not listed by the IUCN.

significance to humans

A minor commercial and recreational species; also collected for the aquarium trade and for public aquaria. Ciguatoxic in some areas.


Humpnose big-eye bream

Monotaxis grandoculis

family

Lethrinidae

taxonomy

Monotaxis grandoculis (Forsskål, 1775), Jidda, Saudi Arabia, Red Sea.

other common names

English: Big-eye barenose, big-eye bream; French: Emperor bossu; Japanese: Yokushima-kurodai.

physical characteristics

The body is oblong with a strongly convex profile of the head anterior to the eye; the snout is steeply sloped. The mouth is relatively large with pronounced canines and molars that are used for grasping and crushing prey, respectively. The eye is large; juveniles have a prominent black stripe through the eye. The dorsal fin has 10 slender spines and 10 soft rays, the anal fin has 3 spines and 9 soft rays, and the pectoral fin has 14 rays. The caudal fin is forked in adults and somewhat lunate in juveniles. Body color is light brown to bluish grey; ventral surfaces are white. Three prominent black or dark brown saddles cover the flank dorsally. Fins and the caudal peduncle range from yellow or reddish orange to clear or dusky. The lobes of the caudal fin may be pink in adults. Able to switch between dark and light color forms by behavioral control, usually in response to the color of the sea bottom. Grows to 23.6 in (60 cm) in total length.

distribution

Indo-West Pacific, from the Red Sea and East Africa east to the Hawaiian Islands, southeast to French Polynesia, south to northern Australia, and north to southern Japan.

habitat

Tropical coral and rocky reefs, over coral, sand, and rubble.

feeding ecology and diet

Feeds at night upon gastropods, echinoderms (mainly sea stars and brittle stars, but also sea cucumbers), crabs, polychaete worms, and tunicates.

behavior

Often solitary in the water-column; juveniles closer to the bottom. Adults also form large aggregations that swim lazily over the reef or reef slope.

reproductive biology

Little is known. Probably forms spawning aggregations and produces pelagic eggs and larvae.

conservation status

Not listed by the IUCN.

significance to humans

Taken in commercial, subsistence, and recreational fisheries; juveniles are collected infrequently for the aquarium trade, and adults are collected for large public aquaria. May be ciguatoxic in some areas, such as the Marshall Islands.


Northern red snapper

Lutjanus campechanus

family

Lutjanidae

taxonomy

Lutjanus campechanus (Poey, 1860), Campeche, Mexico.

other common names

English: Red snapper; French: Vivaneau campèche; Spanish: Pargo de golfo.

physical characteristics

Typically bass-like in appearance, with a deep body, a single dorsal and anal fin, and an emarginate caudal fin. There are 10 spines and 14 soft rays in the dorsal fin, 3 spines and 8–9 soft rays in the anal fin, and the pectoral fin is elongate, almost reaching the anus, with 17 rays. The eyes are relatively small. Body color is red with orangish red fins. Grows to about 39 in (100 cm) in total length.

distribution

Western Atlantic, from Massachusetts (rarely) south through the Carolinas to Florida, west through the Gulf of Mexico to the Yucatan Peninsula and southeast to the northern edge of Cuba.

habitat

Juveniles frequent inshore waters, usually over sand or mud bottoms. Adults prefer rocky bottoms. Depth range of adults is 33–623 ft (10–190 m).

feeding ecology and diet

Accomplished predator that feeds upon smaller fishes, crabs, shrimps, cephalopods, polychaete worms, and gastropods and urochordates in the water column.

behavior

Swims alone or in aggregations just above the bottom. May be idle during daylight and active at night.

reproductive biology

Dioecious; there is no sex change. Males and females migrate to specific locations to form spawning aggregations between the months of April and December. Spawning is pelagic, as are the eggs and larvae. Eggs hatch in about a day.

conservation status

Not listed by the IUCN but has been shown to be vulnerable to overfishing as a primary target species and, for juveniles, as bycatch in shrimp trawls. Fisheries are regulated in U. S. waters.

significance to humans

Important commercial and recreational species.


Goggle eye

Priacanthus hamrur

family

Priacanthidae

taxonomy

Priacanthus hamrur (Forsskål, 1775), Jidda, Saudi Arabia, Red Sea.

other common names

English: Lunar tail bigeye, moontail bullseye; French: Beauclaire miroir; Japanese: Hoseki-kintoki.

physical characteristics

Body deep and compressed, with rough scales, large eyes, relatively large fins, and a caudal fin that is slightly emarginate. There are 10 spines and 14–15 soft rays in the dorsal fin, and 3 spines and 14–15 soft rays in the anal fin. Body color is a red or coppery red that fades to a mottled pattern of silver and red in darkness. Grows to 18 in (45 cm) in total length.

distribution

Indo-West Pacific, from the Red Sea and East Africa east to the Marquesas and Mangareva in French Polynesia, and Easter Island. Also found from southern Japan in the Northern Hemisphere to Australia and Lord Howe Island in the Southern Hemisphere.

habitat

Frequents ledges, crevices, caves, and the lower water column of outer reef slopes, passes, and deep lagoons; also found around pinnacles in lagoons and offshore patch reefs.

feeding ecology and diet

Feeds mainly at night upon smaller fishes, crustaceans, cephalopods, and larger zooplankton. Preyed upon by larger predatory fishes.

behavior

Often solitary, hovering in or next to shelter or in the lower water column in daylight but more active at night. Changes color from red to silver or mottled-silver and red in darkness. The large eyes of this species are advantageous in low-light conditions, both for feeding and predator avoidance.

reproductive biology

Little is known. May form spawning aggregations. The eggs and larvae are reportedly pelagic.

conservation status

Not listed by the IUCN.

significance to humans

Taken in commercial and subsistence fisheries and incidentally in recreational fisheries. Sometimes collected for larger aquaria.


Nassau grouper

Epinephelus striatus

family

Serranidae

taxonomy

Epinephelus striatus (Bloch, 1792), Martinique, West Indies.

other common names

French: Mérou rayé; Spanish: Cherna criolla.

physical characteristics

Robust body with sloping forehead, large fins, and a somewhat truncated caudal fin (rounded in juveniles). There are 11–12 spines, the third or fourth being the longest, and 16–18 soft rays in the notched dorsal fin, and 3 spines and 8 soft rays in the anal fin. Body color is tawny brown (shallow water) to pinkish brown or red (deeper water). There are alternating dark (brown or olive) and pale bands along the flanks and onto the dorsal fins, with similar dark bands extending along the head to the snout, a dark saddle on the upper caudal peduncle, and dark spots around the eye. Two color phases, pale and dark, are controlled behaviorally, and change between one and the other is rapid. Grows to about 47 in (120 cm) in total length.

distribution

Western Atlantic, from Bermuda and Florida south to the Bahamas and the Yucatan Peninsula, throughout the Caribbean, and south to northern Brazil. Absent from most of the Gulf of Mexico.

habitat

Juveniles usually found in sea grass beds, while adults prefer coral and rocky reefs to a depth of 295 ft (90 m).

feeding ecology and diet

An ambush or hunting predator that feeds upon smaller fishes, crustaceans (mainly crabs), and large mollusks. Vulnerable to natural predation mainly as juveniles; adults vulnerable to larger predators such as sharks and large barracudas.

behavior

Generally solitary as adults, although may form aggregations (especially for spawning). Site specific but probably with a large territory. Changes color pattern from one phase to the other depending upon circumstances. Not especially wary and may be friendly towards divers.

reproductive biology

Matures at about 16–18 in (40–45 cm) in standard length, somewhere between 4–8 years of age. A protogynous hermaphrodite, but primary males have also been found. Spawns pelagically in large aggregations that form at specific locations annually depending upon lunar phase and water temperature. Courtship occurs within the aggregation just prior to or after sunset with spawning soon after sunset. The two color phases are used at this time to indicate submissive roles that reduce aggregation and promote courtship behavior. Females assume a dark color phase during courtship and lead spawning events. Events occur usually in subgroups of 3–25 fish, with a spawning ascent well into the water column. Eggs and larvae are pelagic.

conservation status

Listed as Endangered on the IUCN Red List. Spawning aggregations of this species should be protected and fisheries harvests greatly restricted.

significance to humans

Important in commercial, subsistence, and recreational fisheries but now severely overfished throughout most of its range. Especially vulnerable when in spawning aggregations. Also collected for large aquaria. May be ciguatoxic in some areas.


Sixline soapfish

Grammistes sexlineatus

family

Serranidae

taxonomy

Grammistes sexlineatus (Thunberg, 1792), type locality not specified.

other common names

English: Black and white–striped soapfish, gold-striped soapfish, six-stripe soapfish; French: Poisson savon bagnard.

physical characteristics

Body typically grouper or perch-like but somewhat stout. The head is relatively large. There are 7 spines and 13–14 soft rays in the dorsal fin and 2 spines and 9 soft rays in the anal fin. The caudal fin is truncate. The base color is dark brown to black with a series of yellow stripes running from the snout back to the caudal peduncle. With age, some stripes may break up into dashes. Juveniles have small spots. Fins are pinkish in color. Grows to about 12 in (30 cm) in total length.

distribution

Indo-West Pacific, from the Red Sea east to the Marquesas and Mangareva Islands, north to southern Japan and south to northern New Zealand.

habitat

This species occurs on coral and rocky reefs, usually in or near caves and under ledges to a depth of 425 ft (130 m).

feeding ecology and diet

Generally an ambush predator, and quite voracious as it feeds upon smaller fishes and crustaceans. May be preyed upon by larger predatory fishes but usually rejected immediately because of the secretion of grammistin, a toxin secreted from glands in the skin that is used as an antipredator mechanism.

behavior

Usually solitary, preferring to hide during daylight while foraging at night.

reproductive biology

Little is known. Likely a protogynous hermaphrodite with a haremic mating system, pair spawning, and pelagic eggs and larvae.

conservation status

Not listed by the IUCN.

significance to humans

An interesting aquarium species, although because of its voracious appetite it must be kept with much larger fishes. Also taken as a minor commercial and subsistence species in some localities. May be ciguatoxic in some areas.


Blacksaddled coral grouper

Plectropomus laevis

family

Serranidae

taxonomy

Plectropomus laevis (Lacepede, 1801), type locality not specified.

other common names

English: Blacksaddled coral trout, giant coral trout, tiger coral trout; French: Mérou sellé.

physical characteristics

Body elongate and robust, with the outer margin of the anal fin straight, and a large and slightly emarginate caudal fin. The mouth is relatively large with prominent canines. There are 8 spines and 11 soft rays in the dorsal fin, 3 spines and 8 soft rays in the anal fin, and 16–18 rays in the pectoral fin. This species has two color phases. The "tiger" or pale phase consists of a base color of white with four black bars or saddles, some incomplete, along the flank, yellow fins and mouth parts, and small blue spots with dark edges on the caudal penduncle and caudal fin. The dark phase is reddish brown with many small blue spots with dark edges scattered over the body and fins, and less prominent bars along the flanks. Grows to 39 in (100 cm) in total length.

distribution

Indo-West Pacific, from Kenya and Mozambique east to the Tuamotu Archipelago in Polynesia, north to the Ryukyu Islands of Japan, and south to Queensland in Australia; absent from the Red Sea and Persian Gulf.

habitat

Juveniles are often found in turbid areas of deeper lagoons and back reefs, while adults prefer the clear water of seaward reefs, lagoons, and passes. Will utilize holes and crevices in the reef for shelter.

feeding ecology and diet

An efficient predator that feeds primarily upon smaller fishes and, to a lesser extent, large crustaceans. Larger individuals take larger prey, however, and often these are fishes (e.g., parrotfishes, large wrasses, surgeonfishes) that may be up to nearly half their body length in size.

behavior

Juveniles and young adults may be somewhat gregarious and often hover above the bottom, but will retreat to shelter when threatened. Larger adults utilize habitat as shelter but may be found patrolling territories or home ranges.

reproductive biology

Protogynous hermaphrodite that forms spawning aggregations prior to courtship and spawning. Spawning occurs between October and November on the northern Great Barrier Reef. Spawning is pelagic, as are the eggs and larvae.

conservation status

Not listed by the IUCN but potentially vulnerable to overfishing at some localities.

significance to humans

A species of particular importance to commercial, recreational, and subsistence fisheries. Large individuals may be highly ciguatoxic.


Red drum

Sciaenops ocellatus

family

Sciaenidae

taxonomy

Sciaenops ocellatus (Linnaeus, 1766), Carolina, (United States).

other common names

English: Redfish, channel bass; French: Tambour rouge; Spanish: Corvinón ocelado.

physical characteristics

Body elongate with a somewhat large head, subterminal mouth, two dorsal fins, and a truncate caudal fin. The anal fin has two spines and the lateral line is continuous. Body color is coppery-orange to light red; ventral surfaces are white. The upper caudal peduncle has a prominent black spot. Grows to about 61 in (155 cm) in total length, although less so inshore compared to fishes living around barrier islands.

distribution

Western Atlantic, from Massachusetts south to southern Florida and west to northern Mexico in the Gulf of Mexico.

habitat

Inshore coastal waters and estuaries, over sand, mud, or oystershell bottoms, among flooded marsh grasses, or in the surf zone.

feeding ecology and diet

Forages along the bottom in search of crustaceans, mollusks, and smaller fishes; will also form aggregations and attack schools of baitfish in shallow water.

behavior

Occurs singly or in aggregations. Communicates by using muscle contractions to make a drumming noise that is amplified by the swim bladder.

reproductive biology

Forms spawning aggregations, mainly from August through November. Males produce a drumming noise when courting females. Eggs are scattered and the larvae are pelagic.

conservation status

Not listed by the IUCN. Fisheries are heavily regulated in most places, as this species was severely overfished in the Gulf of Mexico during the 1980s.

significance to humans

Once important in commercial fisheries but less so by the beginning of the twenty-first century. An important recreational species that is collected also for large public aquaria. Raised in aquaculture.


Resources

Books

Allen, G. R. Snappers of the World. FAO Species Catalog Vol. 6. Rome: Food and Agriculture Organization of the United Nations, 1985.

Allen, G. R., S. H. Midgley, and M. Allen. Field Guide to the Freshwater Fishes of Australia. Perth: Western Australian Museum, 2002.

Bohlke, J. E., and C. C. G. Chaplin. Fishes of the Bahamas and Adjacent Tropical Waters. 2nd ed. Austin: University of Texas Press, 1993.

Carpenter, K. E., and G. R. Allen. Emperor Fishes and Large-Eye Breams of the World (Family Lethrinidae). FAO Species Catalog Vol. 9. Rome: Food and Agriculture Organization of the United Nations, 1989.

Eschmeyer, W. N., ed. Catalog of Fishes, 3 vols. San Francisco: California Academy of Sciences, 1998.

Francis, M. Coastal Fishes of New Zealand. 3rd ed. Auckland: Reed, 2001.

Helfman, G. S., B. B. Collette, and D. E. Facey. The Diversity of Fishes. Oxford, UK: Blackwell Science, 1997.

Hutchins, B., and M. Thompson. The Marine and Estuarine Fishes of South-Western Australia. Perth: Western Australian Museum Press, 1995.

Kuiter, R. H. Coastal Fishes of South-Eastern Australia. Honolulu: University of Hawaii Press, 1993.

Lieske, E., and R. Myers. Coral Reef Fishes: Indo-Pacific and Caribbean. Rev. ed. London: Harper Collins Publishers, 2001.

Masuda, H., K. Amaoka, C. Araga, T. Uyeno, and T. Yoshino, eds. The Fishes of the Japanese Archipelago. Tokyo: Tokai University Press, 1984.

Myers, R. F. Micronesian Reef Fishes. 3rd ed. Barrigada, Guam: Coral Graphics, 1999.

Neira, F. J., A. G. Miskiewicz, and T. Trnski, eds. Larvae of Temperate Australian Fishes: Laboratory Guide for Larval Fish Identification. Perth: University of Western Australia Press, 1998.

Nelson, J. S. Fishes of the World. 3rd ed. New York: John Wiley and Sons, 1994.

Randall, J. E., G. R. Allen, and R. C. Steene. Fishes of the Great Barrier Reef and Coral Sea. Rev. ed. Honolulu: University of Hawaii Press, 1996.

Smith, M. M., and P. C. Heemstra, eds. Smiths' Sea Fishes. Berlin: Springer-Verlag, 1986.

Thresher, R. E. Reef fish: Behavior and Ecology on the Reef and in the Aquarium. St. Petersburg, FL: Palmetto Publishing Co., 1980.

——. Reproduction in Reef Fishes. Neptune City, NJ: T. F. H. Publications, 1984.

Periodicals

Colin, P. L. "Reproduction of the Nassau Grouper, Epinephelus striatus (Pisces: Serranidae) and Its Relationship to Environmental Conditions." Environmental Biology of Fishes 34 (1992): 357–377.

Donaldson, T. J. "Pair Spawning of Cephalopholis boenack (Serranidae)." Japanese Journal of Ichthyology 35 (1989): 497–500.

——. "Courtship and Spawning Behavior of the Pygmy Grouper, Cephalopholis spiloparaea (Serranidae: Epinephelinae), with Notes on C. argus and C. urodeta." Environmental Biology of Fishes 43 (1995): 363–370.

Fischer, E. A., and C. W. Petersen. "The Evolution of Sexual Patterns in the Seabasses." Bioscience 37 (1987): 482–489.

Sadovy, Y. and A.-M. Eklund. "Synopsis of Biological Data on the Nassau Grouper, Epinephelus striatus (Bloch, 1792), and the Jewfish, E. itajara (Lichtenstein)." NOAA Technical Report NMFS 146 (1999).

Shapiro, D. Y. "Social Behavior, Group Structure, and the Control of Sex Reversal in Hermaphroditic Fish." Advances in the Study of Behavior 10 (1979): 43–102.

Organizations

IUCN/SSC Coral Reef Fishes Specialist Group. International Marinelife Alliance-University of Guam Marine Laboratory, UOG Station, Mangilao, Guam 96913 USA. Phone: (671) 735-2187. Fax: (671) 734-6767. E-mail: [email protected] Web site: <http://www.iucn.org/themes/ssc/sgs/sgs.htm>

Society for the Conservation of Reef Fish Aggregations. c/o Department of Ecology and Biodiversity, University of Hong Kong, Pok Fu Lam Road, Hong Kong, China. E-mail: [email protected] Web site: <http://www.scrfa.org/>

Other

Froese, R., and D. Pauly, eds. Fishbase 2002. ICLARM World Wide Web Electronic Publisher. 2002. [cited April 22, 2003]. <www.fishbase.org>

Terry J. Donaldson, PhD

About this article

Percoidei V (Groupers, Sea Basses, Trevallys, Snappers, Emperors, and Relatives)

Updated About encyclopedia.com content Print Article