Skip to main content

Robert Burns Woodward

Robert Burns Woodward


American Chemist

Robert Woodward was a Nobel Prize-winning chemist who developed numerous techniques for producing complex chemical compounds in the laboratory. Many of the methods he developed are used today to produce compounds that were once only obtainable from living organisms.

Woodward was born in Boston, Massachusetts, in 1917. His childhood interest in science prompted his mother to give him a chemistry set. By the time he was in high school, he was conducting experiments in his home that were similar to those performed in college chemistry classes. Woodward began attending college at the Massachusetts Institute of Technology when he was only sixteen. He rarely went to class, however, usually only showing up for final exams. Instead, he spent his time in the school's chemistry laboratories and the library. He earned his degree in three years and a doctorate in chemistry in one year. After graduating, Woodward spent a summer teaching at the University of Illinois. He spent the remainder of his career teaching chemistry at Harvard University.

Woodward specialized in organic chemistry. Organic chemistry is the study of compounds containing the element carbon. Most compounds that make up plants, animals, and other organisms contain this element, so organic chemistry is largely the chemistry of living things. When Woodward began teaching at Harvard, the field of organic synthesis was still in its infancy. Synthesis involves the use of chemical reactions to produce complex compounds from simpler starting materials. Chemists use synthesis to produce useful compounds in the laboratory.

Woodward focused his attention on stereochemistry and the synthesis of specific stereoisomers. Stereochemistry is the study of the three-dimensional arrangement of the atoms of compounds. Two compounds that are identical except for the way their atoms are arranged in space are said to be stereoisomers. Each stereoisomer of a compound has unique chemical properties. Many of the compounds that make up living things are stereospecific; that is, the organism produces only one particular stereoisomer of a compound. Woodward developed methods not only for synthesizing particular organic compounds but also for isolating specific stereoisomers of the compounds.

In 1944 Woodward and fellow chemist William Doering (1917- ) were the first to synthesize the compound quinine. Quinine is used to treat the mosquito-carried disease malaria. Before quinine was made in the laboratory, it had to be obtained from the bark of South American cinchona trees. Woodward went on to synthesize many other stereospecific organic compounds, including cortisone (a human hormone), cholesterol, reserpine (a tranquilizing drug that was once obtained from the roots of certain tropical plants), chlorophyll, and cephalosporin C (an antibiotic). In 1971, after working for ten years with a team of more than one hundred researchers, he completed the synthesis of vitamin B12. Woodward won the Nobel Prize for chemistry in 1965 for his many syntheses of organic compounds.

Synthesizing such complex organic chemicals required many steps and intermediate compounds. (The synthesis of vitamin B12 required more than one hundred chemical reactions.) Woodward often was able to envision the entire sequence of reactions needed to produce complicated organic compounds before he ever began work in the lab. Many of the syntheses Woodward performed were among the most complicated up to that time. Several of his syntheses formed the basis for drug-manufacturing procedures, such as that used for reserpine.

In 1965 Woodward and the chemist Roald Hoffmann (1937- ) proposed a set of rules that could be used to predict the stereochemistry of the products of a chemical reaction. Today these rules are known as the Woodward-Hoffmann orbital symmetry rules. They helped explain the sometimes unexpected stereochemical results Woodward had observed during his syntheses. This work won Hoffmann a Nobel Prize in 1981. Woodward most likely would have shared the prize if not for his death in 1979.


Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Robert Burns Woodward." Science and Its Times: Understanding the Social Significance of Scientific Discovery. . 22 Feb. 2019 <>.

"Robert Burns Woodward." Science and Its Times: Understanding the Social Significance of Scientific Discovery. . (February 22, 2019).

"Robert Burns Woodward." Science and Its Times: Understanding the Social Significance of Scientific Discovery. . Retrieved February 22, 2019 from

Learn more about citation styles

Citation styles gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, cannot guarantee each citation it generates. Therefore, it’s best to use citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

The Chicago Manual of Style

American Psychological Association

  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.