Skip to main content

Laser Ablation-inductively Coupled Plasma Mass Spectrometry

Laser Ablation-inductively Coupled Plasma Mass Spectrometry

Laser ablation-inductively coupled plasma mass spectrometry (abbreviated LA-ICPMS) is a high technology device that analyzes trace matter samples within forensic science and other areas of science. In LA-ICPMS, a pulsed laser focuses on and vaporizes a very small amount of a solid sample (the LA within the acronym LA-ICPMS). A gas stream transports the resultant vapor into high temperature plasma (the ICP) where the vapor sample is ionized before being extracted into a mass spectrometer for analysis (the MS). Because of its advanced mechanisms, LA-ICPMS provides very reliable analysis of forensic evidence alongside strong improvements in sample size, sensitivity, and speed, when compared with traditional methods. For example, LA-ICPMS can detect microscopic samples such as clothing fibers and glass fragments at a level of parts per billion (ppb), providing forensic experts the ability to determine a material's origin often as precisely as to a particular manufacturer or brand. This expensive technology is an important part in countering domestic and international crimes that increasingly requires more innovative and systematic use of forensic science.

Before the availability of LA-ICPMS as a method for analyzing forensic samples and characterizing physical evidence , forensic scientists used such traditional techniques as Fourier transform infrared (FTIR ) analysis, microscopy, refractive index, and X-ray fluorescence (XRF). However, these older techniques were not always able to analyze small samples or discriminate between chemically, physically, and visually similar materials. Some older techniques also required lengthy preparation times for the samples and used hazardous substances within the analysis, which both increased the potential for sample contamination and destroyed large amounts of samples.

On the other hand, LA-ICPMS is a valuable tool for analyzing elemental and isotopic characteristics of samples and accurately comparing samples with chemical, physical, and visual similarities. The ability to analyze microscopic samples can help investigators with the job of connecting a criminal suspect to a crime scene, where earlier technology was unable to do so. For instance, a sample that is very small in size is more likely and easily moved undetected by a criminal from a crime scene. Shattered glass, for example, produces small splinters, which can become attached to clothing, shoes, and other materials that can uniquely identify a criminal. Unlike traditional forensics techniques, such distinctive signatures can only be analyzed with LA-ICPMS.

LA-ICPMS is also far less destructive than traditional forensic techniques. LA-ICPMS requires only a minute sliver of a sample, often less than one microgram, which preserves the original sample and enables further measurements if authentication is needed. For this reason, LA-ICPMS is often described as an almost non-damaging technique with respect to the forensic sample.

see also Chemical and biological detection technologies; Infrared detection devices; Isotopic analysis; Laser; Scanning electron microscopy; Scanning technologies; Spectroscopy.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Laser Ablation-inductively Coupled Plasma Mass Spectrometry." World of Forensic Science. . Encyclopedia.com. 20 May. 2019 <https://www.encyclopedia.com>.

"Laser Ablation-inductively Coupled Plasma Mass Spectrometry." World of Forensic Science. . Encyclopedia.com. (May 20, 2019). https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/laser-ablation-inductively-coupled-plasma-mass-spectrometry

"Laser Ablation-inductively Coupled Plasma Mass Spectrometry." World of Forensic Science. . Retrieved May 20, 2019 from Encyclopedia.com: https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/laser-ablation-inductively-coupled-plasma-mass-spectrometry

Learn more about citation styles

Citation styles

Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

http://www.mla.org/style

The Chicago Manual of Style

http://www.chicagomanualofstyle.org/tools_citationguide.html

American Psychological Association

http://apastyle.apa.org/

Notes:
  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.