The Institute for Genomic Research (TIGR)

views updated

The Institute for Genomic Research (TIGR)

The Institute for Genomic Research (TIGR) is a non-profit research institute located in Rockville, Maryland. The primary interest of TIGR is the sequencing of the genomes and the subsequent analysis of the sequences in prokaryotic and eukaryotic organisms. J. Craig Venter founded TIGR in 1992 and acted as president until 1998. As of 2002, Venter remained as chairman of the board of trustees for TIGR.

TIGR scientists sequenced the genomes of a number of viruses , bacteria , archaebacteria, plants, animals, fungi , and protozoa . The sequences of the bacteria Haemophilus influenzae and Mycoplasma genitalium, published in 1996, were the first complete bacterial DNA sequences ever accomplished. In 1996, the complete sequence of an archaebacteria (Methanococcus jannaschii ) was published. Since that time, TIGR has sequenced 19 other bacterial genomes. These include the genomes of the bacteria that cause cholera, tuberculosis , meningitis , syphilis , Lyme disease , and stomach ulcers. In addition, TIGR sequenced the genome of the protozoan parasite Plasmodium falciparum, the cause of malaria .

The genesis of TIGR was the automation of the DNA sequencing process. This advance made the idea of large-scale sequencing efforts tangible. At about the same time, Venter was the leader of a section at the National Institute of Neurological Disorders and Stroke. He developed a technique called shotgun cloning that could efficiently and rapidly sequence large stretches of DNA. Use of the bacterial artificial chromosomes in a sequencing strategy that had been developed by Venter allowed large sections of the human genome to be inserted into the bacterium Escherichia coli where many copies of the sequences could be produced for sequence analysis. This technique proved to be much faster than the more conventional sequencing technique that was simultaneously being done by the United States government. The technique involved the creation of many overlapping fragments of the DNA, determination of the sequences, and then, using the common sequences present in the overlapping regions, piecing together the fragments to produce the full sequence of a genome. However, the concept was not readily accepted. At the time, the conventional sequencing strategy was to begin sequencing at one end of the genome and progress through to the other end in a linear manner.

In 1992, Venter left the National Institutes of Health and, with the receipt of a 10-year, $70 million grant from a private company, he founded TIGR in order to utilize the shotgun cloning philosophy as applied to the large-scale sequencing of genetic information.

Acceptance of Venter's and TIGR's approach to gene sequencing came with the 1995 publication of the genome sequence of the bacterium Haemophilus influenzae. This represented the first determination of a genome sequence of a living organism.

Another major research trust at TIGR has been the development of software analysis programs that sift through the vast amounts of sequence information in order to identify probable gene sequences. Also, programs are being developed to permit the analysis of these putative genes and the presentation of the structure of the proteins they code for. A technology known as micro-arraying is being refined. In this technique, thousands of genes can be placed onto a support for simultaneous analysis. This and other initiatives hold the promise of greatly increasing the speed of DNA sequencing.

TIGR also gained widespread public notoriety for its involvement in the sequencing of the human genome. Specifically, TIGR's establishment thrust the issue of corporate ownership of genetic information into the forefront of public awareness. Backed by the financing necessary to begin operations, TIGR partnered with an organization called Human Genome Sciences. The latter company had first opportunity to utilize any sequences emerging from TIGR labs. The specter of genetic information, especially that associated with diseases, being controlled by a private interest was, and remains, extremely controversial.

In 1997, TIGR dissolved the partnership with Human Genome Services. Since then, the genetic sequencing efforts have moved more toward the public domain. For example, now all TIGR gene sequences are posted on the organization's web site and the institute spearheads public forums and symposia.

TIGR is now headquartered on a 17-acre facility on the outskirts of Washington, D.C., and the institute is comprised of nearly 200 research staff.

See also Biotechnology; DNA (Deoxyribonucleic acid); Genetic mapping

About this article

The Institute for Genomic Research (TIGR)

Updated About content Print Article