Heisenberg Uncertainty Principle
Heisenberg Uncertainty Principle
The Heisenberg uncertainty, principle first formulated by German physicist Werner Heisenberg (1901–1976), is basic to quantum theory. The principle asserts that it is physically impossible to measure both the exact position and the exact momentum of a particle (such as an electron) at the same time. The more precisely one quantity is measured, the less precisely the other is known.
Heisenberg’s uncertainty principle, which also helps to explain the existence of virtual particles, is most commonly stated as follows: It is impossible to exactly and simultaneously measure both the momentum p (mass times velocity) and position x of a particle. In fact, it is not only impossible to measure simultaneously the exact values of p and x; they do not have exact, simultaneous values. There is always an uncertainty in momentum (Δp) and an uncertainty in position (Δx), and these two uncertainties cannot be reduced to zero together. Their product is given by Δp x Δx > h /4π, where h is Planck’s constant (6.63 x 10^{34} joulesc second). Thus, if Δp → 0, then Δx → ∞ , and vice versa.
Heisenberg’s uncertainty principle is not equivalent to the statement that it is impossible to observe a system without perturbing it at least slightly; this is a true, but is not uniquely true in quantum mechanics (it is also true in Newtonian mechanics) and is not the source of Heisenberg’s uncertainty principle.
Heisenberg’s uncertainty principle applies even to particles that are not interacting with other systems, that is are not being “observed.”
One consequence of Heisenberg’s uncertainty principle is that the energy and duration of a particle are also characterized by complementary uncertainties. There is always, at every point in space and time, even in a perfect vacuum, an uncertainty in energy DE and an uncertainty in duration Δt, and these two complementary uncertainties, like Δp and Δx, cannot be reduced to zero simultaneously. Their product is given by ΔE x Δt > h /4π.
Electrons and other subatomic particles exist in a dual particle and wave state and so one can only speak of their positions in terms of probability as to location when their velocity (energy state) is known. In fact, these properties apply not only to subatomic particles but to all objects; however, their effects on objects larger than atomic size are too small to measure.
Resources
BOOKS
Buschhorn, Gerd W., et al. Fundamental PhysicsHeisenberg
and Beyond. New York: Springer, 2004.
Griffiths, David J. Introduction to Quantum Mechanics. Upper Saddle River, NJ: Prentice Hall, 2004.
Lindley, David. Uncertainty: Einstein, Heisenberg, Bohr, and the Struggle for the Soul of Science. New York:Doubleday, 2007.
OTHER
Geremia, J.M., et al. “RealTime Quantum Feedback Control of Atomic SpinSqueezing.” Science. 304 (2004): 270273.
Seife, Charles. “Do Deeper Principles Underlie Quantum Uncertainty and Nonlocality?.” Science. 309 (2005): 98.
K. Lee Lerner
Larry Gilman
Terry Watkins
Cite this article
Pick a style below, and copy the text for your bibliography.

MLA

Chicago

APA
"Heisenberg Uncertainty Principle." The Gale Encyclopedia of Science. . Encyclopedia.com. 11 Dec. 2018 <https://www.encyclopedia.com>.
"Heisenberg Uncertainty Principle." The Gale Encyclopedia of Science. . Encyclopedia.com. (December 11, 2018). https://www.encyclopedia.com/science/encyclopediasalmanacstranscriptsandmaps/heisenberguncertaintyprinciple
"Heisenberg Uncertainty Principle." The Gale Encyclopedia of Science. . Retrieved December 11, 2018 from Encyclopedia.com: https://www.encyclopedia.com/science/encyclopediasalmanacstranscriptsandmaps/heisenberguncertaintyprinciple
Citation styles
Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).
Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.
Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the mostrecent information available at these sites:
Modern Language Association
The Chicago Manual of Style
http://www.chicagomanualofstyle.org/tools_citationguide.html
American Psychological Association
Notes:
 Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
 In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.