Gutenberg Discontinuity

views updated

Gutenberg Discontinuity

According to geophysicists, the Gutenberg discontinuity, also called D (D double prime or D prime prime), occurs within the Earths interior at a depth of about 1,800 mi (2,900 km) below the surface. At that depth there is an abrupt change in the seismic waves (generated by earthquakes or explosions) that travel through Earth. In addition, at this depth, primary seismic waves (P waves) decrease in velocity while secondary seismic waves (S waves) disappear completely. S waves shear material, and cannot transmit through liquids, so it is conjectured that the unit above the discontinuity is solid, while the unit below is in a liquid, or molten, form. This distinct change marks the boundary between two sections of Earths interior, known as the lower mantle (which is considered solid) and the underlying outer core (believed to be molten).

The molten section of the outer core is thought to be about 1,292°F (700°C) hotter than the overlying mantle. It is also denser, probably due to a greater percentage of iron. This distinct boundary between the core and the mantle, which was discovered by the change in seismic waves at this depth, is often referred to as the core-mantle boundary, or the CMB. It is a narrow, uneven zone, and contains undulations that may be up to 3 to 5 mi (5-8 km) wide. These undulations are affected by the heat-driven convection activity within the overlying mantle, which may be the driving force of plate tectonics-motion of sections of Earths brittle exterior. These undulations in the core-mantle boundary are also affected by the underlying eddies and currents within the outer cores iron-rich fluids, which are ultimately responsible for earths magnetic field. These irregularities have been discovered due to seismic tomography studies by scientists; that is, digital seismographic images of Earths interior.

The boundary between the core and the mantle does not remain constant. As the heat of Earths interior is constantly but slowly dissipating, the molten core within Earth gradually solidifies and shrinks, causing the core-mantle boundary to slowly move deeper and deeper within Earths core. Geophysicists believe that as the interior of Earth cools, the inner solid core increases in size by centimeters each year.

The Gutenberg discontinuity was named after German-born American Beno Gutenberg (1889-1960) a seismologist who made several important contributions to the study and understanding of Earths interior. It has also been referred to as the Oldham-Gutenberg discontinuity, or the Weichhert-Gutenberg discontinuity.

See also Earthquake; Tectonics.

About this article

Gutenberg Discontinuity

Updated About content Print Article