Skip to main content

Air and Water Purity

Air and Water Purity

Humans are susceptible to contaminated air and water. Breathing in air that is laden with a noxious substance can cause illness or even death. Similarly, drinking water that contains an inorganic or organic poison, or an infectious microorganism can be debilitating or lethal.

Both water and air are particularly vulnerable to contamination by some bacteria and protozoa, and by their toxic products. While the contamination of air and water can be inadvertent, the noxious substances can also be introduced deliberately. Chemicals can also be dispersed in water and by air. A recent example occurred in 1995, when the Japanese cult Aum Shinrikyo released sarin gas into the Tokyo subway system. The poisonous gas attack killed 12 people and sickened 5,000.

As another example, in the months following September 11, 2001, there were several deliberate releases of anthrax spores into the air following the opening of contaminated letters. As well, the vulnerability of water supplies to contamination with a variety of infectious organisms has been recognized.

An amount as small as a glass of water can be contaminated with a quantity of organic or inorganic poison or microbe sufficient to cause harm. Even if the water has been chlorinated, disease causing microorganisms such as Giardia and Cryptosporidium are resistant to chlorine, as are bacterial toxins .

Technologies exist to kill the microorganisms that might be present (disinfection) or to completely remove the microbes and chemicals from the air or water (purification). These technologies, however, are usually designed to remove naturally occurring or polluting contaminants.

Groundwater or surface water treatment focuses on providing water that is fit to drink. Typically, the water is filtered to remove large debris. Some jurisdictions also pass the water through microfilters that remove objects as small as viruses from the treated water. Most drinking water is treated with chlorine or chlorine-containing compounds to kill any bacteria. Other treatments that are gaining widespread acceptance include the use of ultraviolet light, ozone, and other chemicals such as bromine. Water can also be purified by techniques involving reverse osmosis and steam distillation, although these techniques are not typically used, as they are expensive and purify relatively small volumes of water at one time.

Treatment and monitoring ensure that the water emerging from the treatment plant is safe to drink and that it remains that way all the way to the consumer's tap. However, these measures are not intended to thwart a deliberate contamination.

Yet for large surface water supplies, the volume of water alone makes the possibility of deliberate contamination remote. For example, it has been estimated that the contamination of the Crystal Springs Reservoir, which supplies some of the water for San Francisco, California, with enough hydrogen cyanide to harm anyone who drinks a glass of water would require over 400,000 metric tons of the poison. Similarly, huge amounts of bacteria or viruses would be required.

Air is vulnerable to contamination with a variety of bacteria, viruses, and fungi that are light enough to become dispersed in air currents. When inhaled, the microbes can cause infections. Chemicals and toxins can also float in the air, to be inhaled or settle onto exposed skin.

Air purification has long been possible using filters. Bacteria, viruses, and even some inorganic chemicals can be retained on specialized filters. These filters are mainly suitable for laboratories or relatively small, specifically designed ventilation systems. In large indoor environments such as malls or sizeable office buildings, and in the open air, air purification is virtually impossible.

Contamination of the open air poses a similar problem as the contamination of a large volume of water, namely the amount of poisonous agent that is required. For example, estimates are that hundreds of pounds of anthrax spores would be needed to achieve a massive contamination of the population of a large city.

The release of toxic agents into a more limited area such as an office building or a home is more plausible.

see also Air plume and chemical analysis; Bioterrorism; Organic compounds; Toxins.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Air and Water Purity." World of Forensic Science. . Encyclopedia.com. 21 Sep. 2018 <http://www.encyclopedia.com>.

"Air and Water Purity." World of Forensic Science. . Encyclopedia.com. (September 21, 2018). http://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/air-and-water-purity

"Air and Water Purity." World of Forensic Science. . Retrieved September 21, 2018 from Encyclopedia.com: http://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/air-and-water-purity

Learn more about citation styles

Citation styles

Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

http://www.mla.org/style

The Chicago Manual of Style

http://www.chicagomanualofstyle.org/tools_citationguide.html

American Psychological Association

http://apastyle.apa.org/

Notes:
  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.