views updated



Abetalipoproteinemia (ABL) is a rare inherited disorder characterized by difficulty in absorbing fat during digestion. The result is absence of betalipoproteins in the blood, abnormally shaped red blood cells, and deficiencies of vitamins A, E, and K. Symptoms include intestinal, neurological, muscular, skeletal, and ocular problems, along with anemia and prolonged bleeding in some cases.


An unusual sign first described in ABL is the presence of star-shaped red blood cells, which were dubbed "acanthocytes" (literally, thorny cells). Thus, ABL is also known by the name acanthocytosis. Less commonly, ABL may be referred to as Bassen-Kornzweig syndrome.

The underlying problem in ABL is a difficulty in absorbing fats (lipids) in the intestine. Most people with ABL first develop chronic digestive problems, and then progress to neurological, muscular, skeletal, and ocular disease. Disorders of the blood may also be present. Severe vitamin deficiency causes many of the symptoms in ABL. Treatments include restricting fat intake in the diet and vitamin supplementation. Even with early diagnosis and treatment, though, ABL is progressive and cannot be cured.

Genetic profile

Fats are important components of a normal diet, and their processing, transport, and use by the body are critical to normal functioning. Lipids bind to protein (lipoprotein) so they can be absorbed in the intestine, transferred through the blood, and taken up by cells and tissues throughout the body. There are many different lipoprotein complexes in the body. One group, the betalipoproteins, must combine with another protein, microsomal triglyceride transfer protein (MTP). ABL is caused by abnormalities in the gene that codes for MTP. When MTP is nonfunctional or missing, then betalipoproteins will also be decreased or absent. The MTP gene has been localized to chromosome 4.

ABL is an autosomal recessive genetic disorder. This means that both copies of the MTP gene are abnormal in a person affected with the disorder. Since all genes are present at conception, a person cannot "acquire" ABL. Each parent of an affected child carries the abnormal MTP gene but also has a normally functioning gene of that pair. Enough functional MTP is produced by the normal gene so that the parent is unaffected (carrier). When both parents are carriers of the same recessive gene, there is a one in four chance in each pregnancy that they will have an affected child.


ABL is rare, and the true incidence of the disorder is unknown. Prior to the description of ABL in 1950, it is believed that people with ABL were diagnosed as having either Friedreich ataxia (a more common form of hereditary ataxia) or some other neurologic disorder. Misdiagnosis may still occur if all of the symptoms are not present, or if they do not occur in a typical fashion. Most of the reported cases of ABL have been in the Jewish population, but individuals from other ethnic backgrounds have been described as well. As many as one-third of people with ABL have had genetically related (consanguineous) parents. Higher rates of consanguinity are often seen in rare autosomal recessive disorders.

Signs and symptoms

Too much fat left unabsorbed in the intestine results in the symptoms that are often noticed first in ABL, such as chronic diarrhea, loss of appetite, vomiting, and slow weight gain and growth due to reduced uptake of nutrients.

Various lipids, such as cholesterol and its components, are important in the development and normal functioning of nerve and muscle cells. Decreased lipid levels in the bloodstream, and thus elsewhere in the body, are partly responsible for the neuromuscular and ocular problems encountered in ABL. Neurological symptoms include ataxia (poor muscle coordination), loss of deep tendon reflexes, and decreased sensation to touch, pain, and temperature.

Muscular atrophy, the weakening and loss of muscle tissue, is caused by the decreased ability of nerves to control those muscles, as well as lack of nutrients for the muscles themselves. Weakened heart muscle (cardiomyopathy) may occur, and several severe cases have been reported that resulted in early death.

Retinitis pigmentosa is progressive, especially without treatment, and the typical symptoms are loss of night vision and reduced field of vision. Loss of clear vision, nystagmus (involuntary movement of the eyes), and eventual paralysis of the muscles that control the eye may also occur.

Skeletal problems associated with ABL include various types of curvature of the spine and clubfeet. The abnormalities of the spine and feet are thought to result from muscle strength imbalances in those areas during bone growth.

Severe anemia sometimes occurs in ABL, and may be partly due to deficiencies of iron and folic acid (a B vitamin) from poor absorption of nutrients. In addition, because of their abnormal shape, acanthocytes are prematurely destroyed in the blood stream.

Vitamins A, E, and K are fat soluble, meaning they dissolve in lipids in order to be used by the body. Low lipid levels in the blood means that people with ABL have chronic deficiencies of vitamins A, E, and K. Much of the neuromuscular disease seen in ABL is thought to be caused by deficiencies of these vitamins, especially vitamin E.

Approximately one-third of all individuals with ABL develop mental retardation. However, since the proportion of cases involving consanguinity is also reported to be about one-third, it is difficult to determine if mental retardation in individuals with ABL is due to the disease itself or to other effects of consanguinity. Consanguinity may also be responsible for other birth defects seen infrequently in ABL.


The diagnosis of ABL is suspected from the intestinal, neuromuscular, and ocular symptoms, and is confirmed by laboratory tests showing acanthocytes in the blood and absence of betalipoproteins and chylomicrons in the blood. Other diseases resulting in similar intestinal or neurological symptoms, and those associated with symptoms related to malnutrition and vitamin deficiency must be excluded. As of 2000, there was no direct test of the MTP gene available for routine diagnostic testing. Accurate carrier testing and prenatal diagnosis are therefore not yet available. However, this could change at any time. Any couple whose child is diagnosed with ABL should be referred for genetic counseling to obtain the most up-to-date information.

Treatment and management

The recommended treatments for ABL include diet restrictions and vitamin supplementation. Reduced triglyceride content in the diet is suggested if intestinal symptoms require it. Large supplemental doses of vitamin E (tocopherol) have been shown to lessen or even reverse the neurological, muscular, and retinal symptoms in many cases. Supplementation with a water-soluble form of vitamin A is also suggested. Vitamin K therapy should be considered if blood clotting problems occur.

Occupational and physical therapy can assist with any muscular and skeletal problems that arise. Physicians that specialize in orthopedics, digestive disorders, and eye disease should be involved. Support groups and specialty clinics for individuals with multisystem disorders such as ABL are available in nearly all metropolitan areas.


ABL is rare, which means there have been few individuals on which to base prognostic information. The effectiveness of vitamin supplementation and diet restrictions will vary from person to person and family to family. Life span may be near normal with mild to moderate disability in some, but others may have more serious and even life-threatening complications. Arriving at the correct diagnosis as early as possible is important. However, this is often difficult in rare conditions such as ABL. Future therapies, if any, will likely focus on improving lipid absorption in the digestive tract. Further study of the MTP gene may lead to the availability of accurate carrier testing and prenatal diagnosis for some families.



March of Dimes Birth Defects Foundation. 1275 Mamaroneck Ave., White Plains, NY 10605. (888) 663-4637. [email protected]. <http://www.modimes.org>.

National Foundation for Jewish Genetic Diseases, Inc. 250 Park Ave., Suite 1000, New York, NY 10017. (212) 371-1030. <http://www.nfjgd.org>.

National Organization for Rare Disorders (NORD). PO Box 8923, New Fairfield, CT 06812-8923. (203) 746-6518 or (800) 999-6673. Fax: (203) 746-6481. <http://www.rarediseases.org>.

National Society of Genetic Counselors. 233 Canterbury Dr., Wallingford, PA 19086-6617. (610) 872-1192. <http://www.nsgc.org/GeneticCounselingYou.asp>.

National Tay-Sachs and Allied Diseases Association. 2001 Beacon St., Suite 204, Brighton, MA 02135. (800) 906-8723. [email protected]. <http://www.ntsad.org>.

Scott J. Polzin, MS, CGC