Skip to main content
Select Source:

transuranium elements

transuranium elements, in chemistry, radioactive elements with atomic numbers greater than that of uranium (at. no. 92). All the transuranium elements of the actinide series were discovered as synthetic radioactive isotopes at the Univ. of California at Berkeley or at Argonne National Laboratory; in order of increasing atomic number they are neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, and lawrencium. Of these only neptunium and plutonium occur in nature; they are produced in minute amounts in the radioactive decay of uranium.

Much of the study of the transuranium elements has taken place at the Lawrence Berkeley National Laboratory (at Berkeley, Calif.) and at the Joint Institute for Nuclear Research in Dubna, Russia; workers at both locations share credit for the independent discovery of rutherfordium, dubnium, and seaborgium (at. no. 104, 105, and 106, respectively), which are the first three transactinide elements. A German team at the Institute for Heavy Ion Research at Darmstadt discovered bohrium, hassium, meitnerium, darmstadtium, roentgenium, and copernicium (at. no. 107 through 112). The Dubna laboratory, with assistance from Lawrence Livermore National Laboratory, Calif., has been credited with synthesizing flerovium (at. no. 114) and livermorium (at. no. 116) and claims to have produced ununtrium (at. no. 113), ununpentium (at. no. 115), and ununoctium (at. no. 118); and with assistance from Vanderbilt Univ. and the Oak Ridge National Laboratory, Tenn., to have produced ununseptium (at. no. 117). The Berkeley team claimed to have produced livermorium and ununoctium, but later retracted the claim for ununoctium after other laboratories failed to reproduce Berkeley's results and a reanalysis of their data did not show the production of the element.

Up to and including fermium (at. no. 100), the transuranium elements are produced by the capture of neutrons; the transfermium elements are synthesized by the bombardment of transuranium targets with light particles or, more recently, by projecting medium-weight elements at targets of other medium-weight elements (see also synthetic elements).

Isotopes of the transuranium elements are radioactive because their large nuclei are unstable, and the transactinide, or superheavy, elements in particular have very short half-lives. However, on the basis of theories of nuclear structure, physicists have predicted that certain transactinide elements may have relatively stable isotopes. For example, an isotope of element 114 with mass number 298 (comprising 114 protons and 184 neutrons) should be very stable and resemble lead in its chemical properties. However, the three isotopes of element 114 that are claimed to have been synthesized have fewer than the requisite 184 neutrons.

See G. T. Seaborg and W. D. Loveland, The Elements beyond Uranium (1990); L. R. Morss and J. Fuger, ed., Transuranium Elements (1992); G. T. Seaborg and A. Ghiorso, The Transuranium People (1999).

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"transuranium elements." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. 20 Jun. 2018 <http://www.encyclopedia.com>.

"transuranium elements." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. (June 20, 2018). http://www.encyclopedia.com/reference/encyclopedias-almanacs-transcripts-and-maps/transuranium-elements

"transuranium elements." The Columbia Encyclopedia, 6th ed.. . Retrieved June 20, 2018 from Encyclopedia.com: http://www.encyclopedia.com/reference/encyclopedias-almanacs-transcripts-and-maps/transuranium-elements

Learn more about citation styles

Citation styles

Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

http://www.mla.org/style

The Chicago Manual of Style

http://www.chicagomanualofstyle.org/tools_citationguide.html

American Psychological Association

http://apastyle.apa.org/

Notes:
  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.

transuranic elements

transuranic elements (transuranium elements) Elements with atomic numbers higher than that of uranium (92), the best known of which are members of the actinide series (atomic numbers 89 to 103). All transuranic elements are radioactive. Only neptunium and plutonium occur naturally (in minute amounts) but all can be synthesized. The only commercially important transuranic element is plutonium, which is used in nuclear weapons and as a fuel for nuclear reactors.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"transuranic elements." World Encyclopedia. . Encyclopedia.com. 20 Jun. 2018 <http://www.encyclopedia.com>.

"transuranic elements." World Encyclopedia. . Encyclopedia.com. (June 20, 2018). http://www.encyclopedia.com/environment/encyclopedias-almanacs-transcripts-and-maps/transuranic-elements

"transuranic elements." World Encyclopedia. . Retrieved June 20, 2018 from Encyclopedia.com: http://www.encyclopedia.com/environment/encyclopedias-almanacs-transcripts-and-maps/transuranic-elements

Learn more about citation styles

Citation styles

Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

http://www.mla.org/style

The Chicago Manual of Style

http://www.chicagomanualofstyle.org/tools_citationguide.html

American Psychological Association

http://apastyle.apa.org/

Notes:
  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.