Osmosis

views updated Jun 27 2018

OSMOSIS

CONCEPT

The term osmosis describes the movement of a solvent through a semipermeable membrane from a less concentrated solution to a more concentrated one. Water is sometimes called "the perfect solvent," and living tissue (for example, a human being's cell walls) is the best example of a semipermeable membrane. Osmosis has a number of life-preserving functions: it assists plants in receiving water, it helps in the preservation of fruit and meat, and is even used in kidney dialysis. In addition, osmosis can be reversed to remove salt and other impurities from water.

HOW IT WORKS

If you were to insert a hollow tube of a certain diameter into a beaker of water, the water would rise inside the tube and reach the same level as the water outside it. But suppose you sealed the bottom end of the tube with a semipermeable membrane, then half-filled the tube with salt water and again inserted it into the beaker. Over a period of time, the relative levels of the salt water in the tube and the regular water in the beaker would change, with the fresh water gradually rising into the beaker.

This is osmosis at work; however, before investigating the process, it is necessary to understand at least three terms. A solvent is a liquid capable of dissolving or dispersing one or more other substances. A solute is the substance that is dissolved, and a solution is the resulting mixture of solvent and solute. Hence, when you mix a packet of sugar into a cup of hot coffee, the coffeewhich is mostly wateracts as a solvent for the sugar, a solute, and the resulting sweetened coffee is a solution. (Indeed, people who need a cup of coffee in the morning might say that it is a "solution" in more ways than one!) The relative amount of solute in the solution determines whether it can be described as more or less concentrated.

Water and Oil: Molecular Differences

In the illustrations involving the beaker and the hollow tube, water plays one of its leading roles, as a solvent. It is possible to use a number of other solvents for osmosis, but most of the ones that will be discussed here are water-based substances. In fact, virtually everything people drink is either made with water as its central component (soft drinks, coffee, tea, beer and spirits), or comes from a water-based plant or animal life form (fruit juices, wine, milk.) Then of course there is water itself, still the world's most popular drink.

By contrast, people are likely to drink an oily product only in extreme circumstances: for instance, to relieve constipation, holistic-health practitioners often recommend a mixture of olive oil and other compounds for this purpose. Oil, unlike water, has a tendency to pass straight through a person's system, without large amounts of it being absorbed through osmosis. In fact, oil and water differ significantly at the molecular level.

Water is the best example of a polar molecule, sometimes called a dipole. As everyone knows, water is a name for the chemical H2O, in which two relatively small hydrogen atoms bond with a large atom of oxygen. You can visualize a water molecule by imagining oxygen as a basketball with hydrogen as two baseballs fused to the basketball's surface. Bonded together as they are, the oxygen tends to pull electrons from the hydrogen atoms, giving it a slight negative charge and the hydrogen a slight positive charge.

As a result, one end of a water molecule has a positive electrical charge, and the other end a negative charge. This in turn causes the positive end of one molecule to attract the negative side of its neighbor, and vice versa. Though the electromagnetic force is weak, even in relative terms, it is enough to bond water molecules tightly to one another.

By contrast, oily substanceswhether the oil is animal-, vegetable-, or petroleum-basedare typically nonpolar, meaning that the positive and negative charges are distributed evenly across the surface of the molecule. Hence, the bond between oil molecules is much less tight than for water molecules. Clean motor oil in a car's crankshaft behaves as though it were made of millions of tiny ball-bearings, each rolling through the engine without sticking. Water, on the other hand, has a tendency to stick to surfaces, since its molecules are so tightly bonded to one another.

This tight bond gives water highly unusual properties compared to other substances close to its molecular weight. Among these are its high boiling point, its surprisingly low density when frozen, and the characteristics that make osmosis possible. Thanks to its intermolecular structure, water is not only an ideal solvent, but its closely packed structure enables easy movement, as, for instance, from an area of low concentration to an area of high concentration.

In the beaker illustration, the "pure" water is almost pure solvent. (Actually, because of its solvent qualities, water seldom appears in a pure state unless one distills it: even water flowing through a "pure" mountain stream carries all sorts of impurities, including microscopic particles of the rocks over which it flows.) In any case, the fact that the water in the beaker is almost pure makes it easy for it to flow through the semipermeable membrane in the bottom of the tube. By contrast, the solute particles in the salt-water solution have a much harder time passing through, and are much more likely to block the openings in the membrane. As a result, the movement is all in one direction: water in the beaker moves through the membrane, and into the tube.

A few points of clarification are in order here. A semipermeable membrane is anything with a structure somewhere between that of, say, plastic on the one hand and cotton on the other. Were the tube in the beaker covered with Saran wrap, for instance, no water would pass through. On the other hand, if one used a piece of cotton in the bottom of the tube, the water would pass straight through without osmosis taking place. In contrast to cotton, Gore-tex is a fabric containing a very thin layer of plastic with billions of tiny pores which let water vapor flow out without allowing liquid water to seep in. This accounts for the popularity of Gore-tex for outdoor gearit keeps a person dry without holding in their sweat. So Gore-tex would work well as a semipermeable membrane.

Also, it is important to consider the possibilities of what can happen during the process of osmosis. If the tube were filled with pure salt, or salt with only a little water in it, osmosis would reach a point and then stop due to osmotic pressure within the substance. Osmotic pressure results when a relatively concentrated substance takes in a solvent, thus increasing its pressure until it reaches a point at which the solution will not allow any more solvent to enter.

REAL-LIFE APPLICATIONS

Cell Behavior and Salt Water

Cells in the human body and in the bodies of all living things behave like microscopic bags of solution housed in a semipermeable membrane. The health and indeed the very survival of a person, animal, or plant depends on the ability of the cells to maintain their concentration of solutes.

Two illustrations involving salt water demonstrate how osmosis can produce disastrous effects in living things. If you put a carrot in salty water, the salt water will "draw" the water from inside the carrotwhich, like the human body and most other forms of life, is mostly made up of water. Within a few hours, the carrot will be limp, its cells shriveled.

Worse still is the process that occurs when a person drinks salt water. The body can handle a little bit, but if you were to consume nothing but salt water for a period of a few days, as in the case of being stranded on the proverbial desert island, the osmotic pressure would begin drawing water from other parts of your body. Since a human body ranges from 60% water (in an adult male) to 85% in a baby, there would be a great deal of water availablebut just as clearly, water is the essential ingredient in the human body. If you continued to ingest salt water, you would eventually experience dehydration and die.

How, then, do fish and other forms of marine life survive in a salt-water environment? In most cases, a creature whose natural habitat is the ocean has a much higher solute concentration in its cells than does a land animal. Hence, for them, salt water is an isotonic solution, or one that has the same concentration of soluteand hence the same osmotic pressureas in their own cells.

Osmosis in Plants

Plants depend on osmosis to move water from their roots to their leaves. The further toward the edge or the top of the plant, the greater the solute concentration, which creates a difference in osmotic pressure. This is known as osmotic potential, which draws water upward. In addition, osmosis protects leaves against losing water through evaporation.

Crucial to the operation of osmosis in plants are "guard cells," specialized cells dispersed along the surface of the leaves. Each pair of guard cells surrounds a stoma, or pore, controlling its ability to open and thus release moisture.

In some situations, external stimuli such as sunlight may cause the guard cells to draw in potassium from other cells. This leads to an increase in osmotic potential: the guard cell becomes like a person who has eaten a dry biscuit, and is now desperate for a drink of water to wash it down. As a result of its increased osmotic potential, the guard cell eventually takes on water through osmosis. The guard cells then swell with water, opening the stomata and increasing the rate of gas exchange through them. The outcome of this action is an increase in the rate of photosynthesis and plant growth.

When there is a water shortage, however, other cells transmit signals to the guard cells that cause them to release their potassium. This decreases their osmotic potential, and water passes out of the guard cells to the thirsty cells around them. At the same time, the resultant shrinkage in the guard cells closes the stomata, decreasing the rate at which water transpires through them and preventing the plant from wilting.

Osmosis and Medicine

Osmosis has several implications where medical care is concerned, particularly in the case of the storage of vitally important red blood cells. These are normally kept in a plasma solution which is isotonic to the cells when it contains specific proportions of salts and proteins. However, if red blood cells are placed in a hypotonic solution, or one with a lower solute concentration than in the cells themselves, this can be highly detrimental.

Hence water, a life-giving and life-preserving substance in most cases, is a killer in this context. If red blood cells were stored in pure water, osmosis would draw the water into the cells, causing them to swell and eventually burst. Similarly, if the cells were placed in a solution with a higher solute concentration, or hypertonic solution, osmosis would draw water out of the cells until they shriveled.

In fact, the plasma solution used by most hospitals for storing red blood cells is slightly hypertonic relative to the cells, to prevent them from drawing in water and bursting. Physicians use a similar solution when injecting a drug intravenously into a patient. The active ingredient of the drug has to be suspended in some kind of medium, but water would be detrimental for the reasons discussed above, so instead the doctor uses a saline solution that is slightly hypertonic to the patient's red blood cells.

One vital process closely linked to osmosis is dialysis, which is critical to the survival of many victims of kidney diseases. Dialysis is the process by which an artificial kidney machine removes waste products from a patients' bloodperforming the role of a healthy, normally functioning kidney. The openings in the dialyzing membrane are such that not only water, but salts and other waste dissolved in the blood, pass through to a surrounding tank of distilled water. The red blood cells, on the other hand, are too large to enter the dialyzing membrane, so they return to the patient's body.

Preserving Fruits and Meats

Osmosis is also used for preserving fruits and meats, though the process is quite different for the two. In the case of fruit, osmosis is used to dehydrate it, whereas in the preservation of meat, osmosis draws salt into it, thus preventing the intrusion of bacteria.

Most fruits are about 75% water, and this makes them highly susceptible to spoilage. To preserve fruit, it must be dehydrated, whichas in the case of the salt in the meatpresents bacteria with a less-than-hospitable environment. Over the years, people have tried a variety of methods for drying fruit, but most of these have a tendency to shrink and harden the fruit. The reason for this is that most drying methods, such as heat from the Sun, are relatively quick and drastic; osmosis, on the other hand, is slower, more moderateand closer to the behavior of nature.

Osmotic dehydration techniques, in fact, result in fruit that can be stored longer than fruit dehydrated by other methods. This in turn makes it possible to provide consumers with a wider variety of fruit throughout the year. Also, the fruit itself tends to maintain more of its flavor and nutritional qualities while keeping out microorganisms.

Because osmosis alone can only remove about 50% of the water in most ripe fruits, however, the dehydration process involves a secondary method as well. First the fruit is blanched, or placed briefly in scalding water to stop enzymatic action. Next it is subjected to osmotic dehydration by dipping it in, or spreading it with, a specially made variety of syrup whose sugar draws out the water in the fruit. After this, air drying or vacuum drying completes the process. The resulting product is ready to eat; can be preserved on a shelf under most climatic conditions; and may even be powdered for making confectionery items.

Whereas osmotic dehydration of fruit is currently used in many parts of the world, the salt-curing of meat in brine is largely a thing of the past, due to the introduction of refrigeration. Many poorer families, even in the industrialized world, however, remained without electricity long after it spread throughout most of Europe and North America. John Steinbeck's Grapes of Wrath (1939) offers a memorable scene in which a contemporary family, the Joads, kill and cure a pig before leaving Oklahoma for California. And a Web site for Walton Feed, an Idaho company specializing in dehydrated foods, offers reminiscences by Canadians whose families were still salt-curing meats in the middle of the twentieth century. Verla Cress of southern Alberta, for instance, offered a recipe from which the following details are drawn.

First a barrel is filled with a solution containing 2 gal (7.57 l) of hot water and 8 oz (.2268 kg) of salt, or 32 parts hot water to one part salt, as well as a small quantity of vinegar. The pig or cow, which would have just been slaughtered, should then be cut up into what Cress called "ham-sized pieces (about 10-15 lb [5-7 kg]) each." The pieces are then soaked in the brine barrel for six days, after which the meat is removed, dried, "and put in flour or gunny sacks to keep the flies away. Then hang it up in a cool dry place to dry. It will keep like this for perhaps six weeks if stored in a cool place during the Summer. Of course, it will keep much longer in the Winter. If it goes bad, you'll know it!"

Cress offered another method, one still used on ham today. Instead of salt, sugar is used in a mixture of 32 oz (.94 l) to 3 gal (11.36 l) of water. After being removed, the meat is smokedthat is, exposed to smoke from a typically aromatic wood such as hickory, in an enclosed barnfor three days. Smoking the meat tends to make it last much longer: four months in the summer, according to Cress.

The Walton Feeds Web page included another brine-curing recipe, this one used by the women of the Stirling, Alberta, Church of the Latter-Day Saints in 1973. Also included were reminiscences by Glenn Adamson (born 1915): "When we butchered a pig, Dad filled a wooden 45-gal (170.34 l) barrel with salt brine. We cut up the pig into maybe eight pieces and put it in the brine barrel. The pork soaked in the barrel for several days, then the meat was taken out, and the water was thrown away. In the hot summer days after they [the pieces of meat] had dried, they were put in the root cellar to keep them cool. The meat was good for eating two or three months this way."

For thousands of years, people used salt to cure and preserve meat: for instance, the sailing ships that first came to the New World carried on board barrels full of cured meat, which fed sailors on the voyage over. Meat was not the only type of food preserved through the use of salt or brine, which is hypertonicand thus lethalto bacteria cells. Among other items packed in brine were fish, olives, and vegetables.

Even today, some types of canned fish come to the consumer still packed in brine, as do olives. Another method that survives is the use of sugarwhich can be just as effective as salt for keeping out bacteriato preserve fruit in jam.

Reverse Osmosis

Given the many ways osmosis is used for preserving food, not to mention its many interactions with water, it should not be surprising to discover that osmosis can also be used for desalination, or turning salt water into drinking water. Actually, it is not osmosis, strictly speaking, but rather reverse osmosis that turns salt water from the ocean97% of Earth's water supplyinto water that can be used for bathing, agriculture, and in some cases even drinking.

When you mix a teaspoon of sugar into a cup of coffee, as mentioned in an earlier illustration, this is a non-reversible process. Short of some highly complicated undertakingfor instance, using ultrasonic sound wavesit would be impossible to separate solute and solvent.

Osmosis, on the other hand, can be reversed. This is done by using a controlled external pressure of approximately 60 atmospheres, an atmosphere being equal to the air pressure at sea level14.7 pounds-per-square-inch (1.013 × 105 Pa.) In reverse osmosis, this pressure is applied to the area of higher solute concentrationin this case, the seawater. As a result, the pressure in the seawater pushes water molecules into a reservoir of pure water.

If performed by someone with a few rudimentary tools and a knowledge of how to provide just the right amount of pressure, it is possible that reverse osmosis could save the life of a shipwreck victim stranded in a location without a fresh water supply. On the other hand, a person in such a situation may be able to absorb sufficient water from fruits and plant life, as Tom Hanks's character did in the 2001 film Cast Away.

Companies such as Reverse Osmosis Systems in Atlanta, Georgia, offer a small unit for home or business use, which actually performs the reverse-osmosis process on a small scale. The unit makes use of a process called crossflow, which continually cleans the semipermeable membrane of impurities that have been removed from the water. A small pump provides the pressure necessary to push the water through the membrane. In addition to an under-the-sink model, a reverse osmosis water cooler is also available.

Not only is reverse osmosis used for making water safe, it is also applied to metals in a variety of capacities, not least of which is its use in treating wastewater from electroplating. But there are other metallurgical methods of reverse osmosis that have little to do with water treatment: metal finishing, as well as recycling of metals and chemicals. These processes are highly complicated, but they involve the same principle of removing impurities that governs reverse osmosis.

WHERE TO LEARN MORE

Francis, Frederick J., editor-in-chief. Encyclopedia of Food Science and Technology. New York: Wiley, 2000.

Gardner, Robert. Science Project Ideas About Kitchen Chemistry. Berkeley, N.J.: Enslow Publishers, 2002.

Laschish, Uri. "Osmosis, Reverse Osmosis, and Osmotic Pressure: What They Are" (Web site). <http://members.tripod.com/~urila/> (February 20, 2001).

"Lesson 5: Osmosis" (Web site). <http://www.biologylessons.sdsu.edu/classes/lab5/semnet/> (February 20, 2001).

Rosenfeld, Sam. Science Experiments with Water. Illustrated by John J. Floherty, Jr. Irvington-on-Hudson, NY: Harvey House, 1965.

"Salt-Curing Meat in Brine." Walton Feed (Web site). <http://waltonfeed.com/old/brine.html> (February 20, 2001).

KEY TERMS

HYPERTONIC:

Of higher osmotic pressure.

HYPOTONIC:

Of lower osmotic pressure.

ISOTONIC:

Of equal osmotic pressure.

OSMOSIS:

The movement of a solvent through a semipermeable membrane from a less concentrated solution to a more concentrated one.

OSMOTIC POTENTIAL:

A difference in osmotic pressure that draws water from an area of less osmotic pressure to an area of greater osmotic pressure.

OSMOTIC PRESSURE:

The pressure that builds in a substance as it experiencesosmosis, and eventually stops that process.

SOLVENT:

A liquid capable of dissolving or dispersing one or more other substances.

SOLUTE:

A substance capable of being dissolved in a solvent.

SOLUTION:

A mixture of solvent and solute.

Osmosis

views updated May 21 2018

Osmosis

Osmosis is the movement of solvent, such as water , through a barrier from a less concentrated solution into a more concentrated solution. It occurs when two solutions are separated by a semipermeable membrane which allows only the solvent to pass through. Osmosis plays a major role in the chemistry of living things and also has applications in medicine and technology.

Osmosis was first described in 1748 by J. A. Nollet. He placed a solution of "spirits of wine" (ethyl alcohol and water) in a bottle and sealed it with a piece of pig's
bladder. The bladder, like most biological membranes, was semipermeable. Upon immersion of the bottle in a larger container of pure water, the bladder swelled, and eventually burst, as water moved into it from outside. Nollet concluded that the solution exerted a kind of pressure , now called osmotic pressure. Later work by H. Dutrochet (1826) and J. H. van't Hoff (1885) led to mathematical formulas describing osmosis as a physical property of solutions.

Although osmosis moves solvent in one direction, its cause is the random motions of molecules in all directions. The driving force is the difference in concentration of solute on either side of the membrane. Suppose that two solutions, one more concentrated and the other more dilute, are separated by a semipermeable membrane.

On the dilute side, almost all of the molecules hitting the membrane at any moment are solvent, and can pass through. But on the concentrated side, more of the "hits" are from solute particles, which cannot pass through. Therefore, at any moment, more molecules enter the concentrated side than leave it. As a result, the volume of the concentrated side grows. But change in volume also changes the concentration. As the trapped solute particles spread over a larger volume, they become more dilute. The other side, which shrinks, becomes more concentrated. The process continues until both sides reach equal concentration.

Osmotic pressure

As osmosis proceeds, pressure builds up on the side of the membrane where volume has increased. Ultimately, the pressure prevents more water from entering, so osmosis stops. The osmotic pressure of a solution is the pressure needed to prevent osmosis into the solution. It is measured in comparison with pure solvent. The osmotic pressure is directly related to the different heights of the liquid on either side of the membrane when no more change in volume occurs. Osmotic pressure depends on the temperature and the original concentration of solute. Interestingly, it does not depend on what is dissolved. Two solutions of different solutes, for example alcohol and sugar, will each have the same osmotic pressure, provided they have the same concentration. Osmotic pressure is therefore a colligative property of solutions, one which depends only on the concentration of dissolved particles, not on their chemical identity.


Osmosis in living organisms

Living cells may be thought of as microscopically small bags of solutions contained within semipermeable
membranes. For the cell to survive, the concentration of solutes within the cell must stay within a safe range.

A cell placed in a solution more concentrated than itself (a hypertonic solution) will shrink due to loss of water, and may die of dehydration. A familiar example is a carrot placed in salty water. Within a few hours the carrot will become limp and soft because its cells have shrivelled. A cell placed in a solution more dilute than itself (a hypotonic solution) will expand as water enters it. Under such conditions the cell may burst.

Organisms have various methods for keeping their cell solute concentrations within safe levels. Some live only in surroundings that are isotonic (have the same solute concentration as their own cells). For example, jellyfish which live in saltwater have much higher cell solute concentrations than do fresh water creatures. Other animals continually replace lost water and solutes by drinking and eating, and remove the excess water and solutes through excretion of urine. Plant cells are protected from bursting by the rigid cell wall which surrounds the cell membrane. As water enters, the cell expands until it pushes up tight against its cell wall. The cell wall pushes back with an equal pressure, so no more water can enter.

Osmosis contributes to the movement of water through plants. Solute concentrations increase going from soil to root cells to leaf cells, and the resulting differences of osmotic pressure help to draw water upward. Osmosis also controls the evaporation of water from leaves by regulating the size of the openings (stomata) in the leaves' surfaces.

Applications of osmosis

Preserving food

For thousands of years, perishable foods such as fish , olives, and vegetables have been preserved in salt or brine. The high salt concentration is hypertonic to bacteria cells, and kills them by dehydration before they can cause the food to spoil. Preserving fruit in sugar (jams, jellies) works on the same principle.


Artificial kidneys

Victims of kidney disease rely upon artificial kidney machines to remove waste products from their blood . Such machines use a process called dialysis , which is similar to osmosis. The difference is that the dialyzing membrane permits not just water, but also salts and other small molecules dissolved in the blood to pass through. These move out into a surrounding tank of distilled water. The red blood cells are too large to pass through the dialyzing membrane, so they return to the patient's body.


Desalination by reverse osmosis

Oceans hold about 97% of the earth's water supply, but their high salt content makes them unsafe for drinking or agriculture. Salt can be removed by placing the seawater in contact with a semipermeable membrane, then subjecting it to pressures greater than 60 atmospheres. Under these conditions, reverse osmosis occurs, pushing the water molecules out of the seawater into a reservoir of pure water.

See also Desalination; Osmosis (cellular).

Resources

books

Galston, Arthur W. Green Wisdom. New York: Basic Books, 1981.

Gross, Cynthia S. The New Biotechnology: Putting Microbes to Work. Minneapolis: Lerner Publications, 1988.

Krasner, R. I. The Microbial Challenge: Human-Microbe Interactions. Washington: American Society for Microbiology, 2002.

Margulis, Lynn, and Dorion Sagan. The Microcosmos Coloring Book. Boston: Harcourt Brace Jovanovich, 1988.

Tocci, Salvatore. Biology Projects for Young Scientists. New York: Franklin Watts, 1987.


periodicals

Uehling, M. D. "Salt Water on Tap." Popular Science 238 (April 1991): 82-85.


Sara G. B. Fishman

KEY TERMS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Concentration

—The quantity of solute dissolved in a given volume of solution.

Isotonic solutions

—Two solutions that have the same concentration of solute particles, and therefore the same osmotic pressure.

Osmotic pressure

—The pressure which, applied to a solution in contact with pure solvent through a semipermeable membrane, will prevent osmosis from occurring.

Semipermeable membrane

—A thin barrier between two solutions, which permits only certain components of the solutions, usually the solvent, to pass through.

Solute

—Usually a solid. It is the least abundant component of a solution.

Solvent

—The major component of a solution, for example, water in sugar water.

Osmosis

views updated May 09 2018

Osmosis

Osmotic pressure

Osmosis in living organisms

Applications of osmosis

Resources

Osmosis is the movement of solvent, such as water, through a barrier from a less concentrated solution into a more concentrated solution. It occurs when two solutions are separated by a semipermeable membrane which allows only the solvent to pass through. Osmosis plays a major role in the chemistry of living things and also has applications in medicine and technology.

Although osmosis moves solvent in one direction, its cause is the random motions of molecules in all directions. The driving force is the difference in concentration of solute on either side of the membrane. Suppose that two solutions, one more concentrated and the other more dilute, are separated by a semi-permeable membrane.

On the dilute side, almost all of the molecules hitting the membrane at any moment are solvent, and can pass through. But on the concentrated side, more of the hits are from solute particles, which

cannot pass through. Therefore, at any moment, more molecules enter the concentrated side than leave it. As a result, the volume of the concentrated side grows. But change in volume also changes the concentration. As the trapped solute particles spread over a larger volume, they become more dilute. The other side, which shrinks, becomes more concentrated. The process continues until both sides reach equal concentration.

Osmotic pressure

As osmosis proceeds, pressure builds up on the side of the membrane where volume has increased. Ultimately, the pressure prevents more water from entering, so osmosis stops. The osmotic pressure of a solution is the pressure needed to prevent osmosis into the solution. It is measured in comparison with pure solvent. The osmotic pressure is directly related to the different heights of the liquid on either side of the membrane when no more change in volume occurs. Osmotic pressure depends on the temperature and the original concentration of solute. Interestingly, it does not depend on what is dissolved. Two solutions of different solutes, for example alcohol and sugar, will each have the same osmotic pressure, provided they have the same concentration. Osmotic pressure is therefore a colligative property of solutions, one which depends only on the concentration of dissolved particles, not on their chemical identity.

Osmosis in living organisms

Living cells may be thought of as microscopically small bags of solutions contained within semipermeable membranes. For the cell to survive, the concentration of solutes within the cell must stay within a safe range.

A cell placed in a solution more concentrated than itself (a hypertonic solution) will shrink due to loss of water, and may die of dehydration. A familiar example is a carrot placed in salty water. Within a few hours the carrot will become limp and soft because its cells have shrivelled. A cell placed in a solution more dilute than itself (a hypotonic solution) will expand as water enters it. Under such conditions the cell may burst.

Organisms have various methods for keeping their cell solute concentrations within safe levels. Some live only in surroundings that are isotonic (have the same

solute concentration as their own cells). For example, jellyfish which live in salt water have much higher cell solute concentrations than do fresh water creatures. Other animals continually replace lost water and solutes by drinking and eating, and remove the excess water and solutes through excretion of urine. Plant cells are protected from bursting by the rigid cell wall which surrounds the cell membrane. As water enters, the cell expands until it pushes up tight against its cell wall. The cell wall pushes back with an equal pressure, so no more water can enter.

Osmosis contributes to the movement of water through plants. Solute concentrations increase going from soil to root cells to leaf cells, and the resulting differences of osmotic pressure help to draw water upward. Osmosis also controls the evaporation of water from leaves by regulating the size of the openings (stomata) in the leaves surfaces.

Applications of osmosis

For thousands of years, perishable foods such as fish, olives, and vegetables have been preserved in salt or brine. The high salt concentration is hypertonic to bacteria cells, and kills them by dehydration before they can cause the food to spoil. Preserving fruit in sugar (jams, jellies) works on the same principle.

Victims of kidney disease rely upon artificial kidney machines to remove waste products from their blood. Such machines use a process called dialysis, which is similar to osmosis. The difference is that the dialyzing membrane permits not just water, but also salts and other small molecules dissolved in the blood to pass through. These move out into a surrounding tank of distilled water. The red blood cells are too large to pass through the dialyzing membrane, so they return to the patients body.

Oceans hold about 97% of Earths water supply, but their high salt content makes them unsafe for drinking or agriculture. Salt can be removed by placing the seawater in contact with a semipermeable membrane, then subjecting it to pressures greater than 60 atmospheres. Under these conditions, reverse osmosis occurs, pushing the water molecules out of the seawater into a reservoir of pure water. Reverse osmosis can purify even highly polluted water.

Resources

BOOKS

Alberts, Bruce, Alexander Johnson, Julian Lewis, Martin Raff, Dennis Bray, Karen Hopkin, Keith Roberts, and Peter Walter. Essential Cell Biology, Second Edition. New York: Garland Science/Taylor & Francis Group, 2003.

Nelson, David L. and Michael M. Cox. Lehninger Principles of Biochemistry, Fourth Edition. New York: W.H. Freeman, 2004.

Voet, Donald and Judith G. Voet. Biochemistry. New York: John Wiley & Sons, 2006.

Sara G. B. Fishman

Osmosis

views updated May 29 2018

Osmosis

Osmosis is the movement of a solvent, such as water, through a semi-permeable membrane. (A solvent is the major component of a solution, the liquid in which something else is dissolved.) A semipermeable membrane is a material that allows some materials to flow through it but not others. The reason that semipermeable membranes have this property is that they contain very small holes. Small molecules, such as those of water, can flow easily through the holes. But large molecules, such as those of solutes (the component being dissolved, for instance sugar), cannot. Figure 1 illustrates this process. Notice that smaller molecules of water are able to pass through the openings in the membrane shown here but larger molecules of sugar are not.

Osmotic pressure

Osmosis always moves a solvent in one direction only, from a less concentrated solution to a more concentrated solution. As osmosis proceeds, pressure builds up on the side of the membrane where volume has increased. Ultimately, this pressure prevents more water from entering (for example, the bag in Figure 1), and osmosis stops. The osmotic pressure of a solution is the pressure needed to prevent osmosis from occurring.

Osmosis in living organisms

Living cells may be thought of as very small bags of solutions contained within semipermeable membranes. For example, Figure 1 might be thought of as a cell surrounded by a watery fluid. For the cell to survive, the concentration of substances within the cell must stay within a safe range.

A cell placed in a solution more concentrated than itself (a hypertonic solution) will shrink due to loss of water. It may eventually die of dehydration. You can observe this effect with a carrot placed in salty water. Within a few hours the carrot becomes limp and soft because its cells have shrivelled.

By contrast, a cell placed in a solution more dilute than itself (a hypotonic solution) will expand as water enters it. Under such conditions

the cell may burst. In general, plant cells are protected from bursting by the rigid cell wall that surrounds the cell membrane. As water enters the cell, it expands until it pushes up tight against the cell wall. The cell wall pushes back with an equal pressure, so no more water can enter.

Osmosis contributes to the movement of water through plants. Solute concentrations (the ratio of solutes to solvents in a solution) increase going from soil to root cells to leaf cells. The resulting differences of osmotic pressure help to push water upward. Osmosis also controls the evaporation of water from leaves by regulating the size of the openings (stomata) in the leaves' surfaces.

Words to Know

Concentration: The quantity of solute (for example sugar) dissolved in a given volume of solution (for example water).

Hypertonic solution: A solution with a higher osmotic pressure (solute concentration) than another solution.

Hypotonic solution: A solution with a lower osmotic pressure (solute concentration) than another solution.

Isotonic solutions: Two solutions that have the same concentration of solute particles and therefore the same osmotic pressure.

Osmotic pressure: The pressure which, applied to a solution in contact with pure solvent through a semipermeable membrane, will prevent osmosis from occurring.

Semipermeable membrane: A thin barrier between two solutions that permits only certain components of the solutions, usually the solvent, to pass through.

Solute: A substance dissolved to make a solution, for example sugar in sugar water.

Solution: A mixture of two or more substances that appears to be uniform throughout except on a molecular level.

Solvent: The major component of a solution or the liquid in which some other component is dissolved, for example water in sugar water.

Organisms have various other methods for keeping their solute levels within safe range. Some cells live only in surroundings that are isotonic (have the same solute concentration as their own cells). For example, jellyfish that live in salt water have much higher salt-to-water solute concentrations than do freshwater creatures. Other animals continually replace lost water and solutes by drinking and eating. They remove excess water and solutes through excretion of urine.

Applications of osmosis

Preserving food. For thousands of years, perishable foods such as fish, olives, and vegetables have been preserved in salt or brine. The high salt concentration is hypertonic to bacteria cells, and kills them by dehydration before they can cause the food to spoil. Preserving fruit in sugar (as in jams or jellies) works on the same principle.

Artificial kidneys. People with kidney disease rely upon artificial kidney machines to remove waste products from their blood. Such machines use a process called dialysis, which is similar to osmosis. The difference between osmosis and dialysis is that a dialyzing membrane permits not just water, but also salts and other small molecules dissolved in the blood, to pass through. These materials move out of blood into a surrounding tank of distilled water. Red blood cells are too large to pass through the dialyzing membrane, so they return to the patient's body.

Desalination by reverse osmosis. Oceans hold about 97 percent of Earth's water supply, but their high salt content makes them unusable for drinking or agriculture. Salt can be removed by placing seawater in contact with a semipermeable membrane, then subjecting it to great pressure. Under these conditions, reverse osmosis occurs, by which pressure is used to push water from a more concentrated solution to a less concentrated solution. The process is just the reverse of the normal process of osmosis. In desalination, reverse osmosis is used to push water mole-cules out of seawater into a reservoir of pure water.

[See also Diffusion; Solution ]

Osmosis

views updated Jun 08 2018

Osmosis


Osmosis is the movement of water from one solution to another through a membrane or barrier that separates the solutions. Osmosis is a natural process that takes place whenever the proper conditions arise. It occurs when solutions of different strengths are separated by a barrier whose pores will only let molecules of a certain size pass through. Water moves from the weaker solution to the stronger solution in order to make both solutions of equal strength. Osmosis occurs in both animals and plants.

One of the characteristics of nature is that it always tries to equalize situations, to bring things into balance, or to make extremes more similar. This characteristic leads to a phenomenon known as diffusion in which a substance will always spread from an area where it is highly concentrated to one of lesser concentration. Osmosis is a variation of diffusion and might be described as diffusion involving a solution and a barrier. Osmosis necessarily involves liquids called solutions. A solution is a liquid with something dissolved in it. If a teaspoon of sugar is stirred into a glass of pure water until it dissolves, a solution is made. If that container of sugar water is somehow arranged so that only a permeable barrier (one with holes the size of water molecules) comes between it and another container of pure water, after a few hours the pure water will have moved through the barrier and into the sugar solution. The water moved into the sugar solution because water molecules are smaller than sugar molecules. Therefore, only the water molecules are able to move and equalize the solutions. This passage or movement stops when the osmotic pressure is reached, or the equalization of pressure on both sides of the barrier. Equal pressure means that the solution concentrations on both sides of the barrier are no longer high and low but the same.

In the life sciences, osmosis occurs at the cellular level. Since animals have watery body fluids that contain a variety of dissolved salts, osmosis is necessary to keep their salt and water levels constant. Osmosis plays a key role in the kidneys of mammals since these organs filter urine from the blood, reabsorb water and nutrients, and secrete wastes. Plants obtain the water they need through osmosis that occurs at their root hairs. Root hairs contain more dissolved substances (such as sugar and salts) than there are in the soil. Because of this difference in the solution concentration between the outside and the inside of the plant, water is able to pass through the root hair cells and into the roots by osmosis. Osmosis also helps a plant stay upright and stiff. Osmosis is an ideal method of moving small amounts of water slowly, whether in a plant or an animal, since it does not require the use of any energy or tubelike transport systems.

osmosis

views updated Jun 11 2018

osmosis The net movement of water molecules from a region where their concentration is high to a region where their concentration is low through a partially permeable membrane. The distribution of water in living organisms is dependent to a large extent on osmosis, water entering the cells through their partially permeable plasma membranes. The pressure required to stop the flow of pure water into a solution across a partially permeable membrane is a characteristic of the solution, and is called the osmotic pressure. Thus water will move from a region of low osmotic pressure to a region of high osmotic pressure (see also oncotic pressure). In terms of water potential, water moves from an area of high (less negative) water potential to an area of low (more negative) water potential. Both water potential and osmotic pressure can be used to explain osmosis but it is now recommended that only water potential be used in plant studies (see also plasmolysis; turgor). Animals have evolved various means to counteract the effects of osmosis (see osmoregulation); in animals solutions are still described in terms of osmotic pressure (see hypertonic solution; hypotonic solution; isotonic).

osmosis

views updated Jun 11 2018

osmosis A term describing the movement of fluid (usually water) across a semipermeable membrane. The membrane is described as semipermeable because it allows water, but not dissolved substances, to cross it. Water moves across the membrane from where the concentration of dissolved substances is lowest to where it is highest. Thus, water moves down its concentration gradient from high concentration to low concentration. The process continues until the concentration of solutes is the same on both sides of the membrane. The nature of the dissolved substances is unimportant, other than their not being able to penetrate the membrane. The membranes of most living cells are semipermeable, and cells swell if they are placed in a solution containing less dissolved substance than blood (hypotonic), and shrink in more concentrated (hypertonic) solutions. Hydrostatic pressure can be applied to oppose fluid movement; the pressure required to oppose the movement exactly is the ‘osmotic pressure’. Thus cells can act as osmometers, by changing shape when the tonicity of the bathing solution changes. In the hypothalamus are cells which are very sensitive to osmotic changes in the blood. If, for example, blood becomes hypertonic, as in thirst, the cells respond by sending impulses to the posterior pituitary to release antidiuretic hormone, which prevents further fluid loss by the kidneys. Alternatively, if large amounts of fluid (beer, for example) are imbibed, antidiuretic hormone is cut off and diuresis ensues.

Alan W. Cuthbert


See also body fluids; cell.

osmosis

views updated May 17 2018

os·mo·sis / äzˈmōsis; äs-/ • n. Biol. & Chem. a process by which molecules of a solvent tend to pass through a semipermeable membrane from a less concentrated solution into a more concentrated one, thus equalizing the concentrations on each side of the membrane. ∎ fig. the process of gradual or unconscious assimilation of ideas, knowledge, etc.: what she knows of the blue-blood set she learned not through birthright, not even through wealth, but through osmosis.DERIVATIVES: os·mot·ic / -mätik/ adj.os·mot·i·cal·ly / -ˈmädik(ə)lē/ adv.

osmosis

views updated Jun 27 2018

osmosis Diffusion of a solvent (such as water) through a selectively permeable membrane (one which only allows the passage of certain dissolved substances) into a more concentrated solution. Because the more concentrated solution contains a lower concentration of solvent molecules, the solvent flows by diffusion to dilute it until concentrations of solvent are equal on both sides of the membrane. Osmosis is a vital cellular process to distribute water in animals and plants. This happens, for example, when plant roots take up water from the soil. See also turgor pressure

osmosis

views updated May 29 2018

osmosis The passage of water through a semi‐permeable membrane, from a region of low concentration of solutes to one of higher concentration. Reverse osmosis is the passage of water from a more concentrated to a less concentrated solution through a semi‐permeable membrane by the application of pressure. Used for desalination of sea water, concentration of fruit juices, and processing of whey. The membranes commonly used are cellulose acetate or polyamide of very small pore size, 10−4−10−3 μm. See also osmotic pressure.