Nikolai Ivanovich Lobachevskii
Nikolai Ivanovich Lobachevskii
The Russian mathematician Nikolai Ivanovich Lobachevskii (17921856) was one of the first to found an internally consistent system of nonEuclidean geometry. His revolutionary ideas had profound implications for theoretical physics, especially the theory of relativity.
Nikolai Lobachevskii was born on Dec. 2 (N.S.; Nov. 21, O.S.), 1792, in Nizhni Novgorod (now Gorkii) into a poor family of a government official. In 1807 Lobachevskii entered Kazan University to study medicine. However, the following year Johann Martin Bartels, a teacher of pure mathematics, arrived at Kazan University from Germany. He was soon followed by the astronomer J. J. Littrow. Under their instruction, Lobachevskii made a permanent commitment to mathematics and science. He completed his studies at the university in 1811, earning the degree of master of physics and mathematics.
In 1812 Lobachevskii finished his first paper, "The Theory of Elliptical Motion of Heavenly Bodies." Two years later he was appointed assistant professor at Kazan University, and in 1816 he was promoted to extraordinary professor. In 1820 Bartels left for the University of Dorpat (now Tartu in Estonia), resulting in Lobachevskii's becoming the leading mathematician of the university. He became full professor of pure mathematics in 1822, occupying the chair vacated by Bartels.
Euclid's Parallel Postulate
Lobachevskii's great contribution to the development of modern mathematics begins with the fifth postulate (sometimes referred to as axiom XI) in Euclid's Elements. A modern version of this postulate reads: Through a point lying outside a given line only one line can be drawn parallel to the given line.
Since the appearance of the Elements over 2, 000 years ago, many mathematicians have attempted to deduce the parallel postulate as a theorem from previously established axioms and postulates. The Greek Neoplatonist Proclus records in his Commentary on the First Book of Euclid the geometers who were dissatisfied with Euclid's formulation of the parallel postulate and designation of the parallel statement as a legitimate postulate. The Arabs, who became heirs to Greek science and mathematics, were divided on the question of the legitimacy of the fifth postulate. Most Renaissance geometers repeated the criticisms and "proofs" of Proclus and the Arabs respecting Euclid's fifth postulate.
The first to attempt a proof of the parallel postulate by a reductio ad absurdum was Girolamo Saccheri. His approach was continued and developed in a more profound way by Johann Heinrich Lambert, who produced in 1766 a theory of parallel lines that came close to a nonEuclidean geometry. However, most geometers who concentrated on seeking new proofs of the parallel postulate discovered that ultimately their "proofs" consisted of assertions which themselves required proof or were merely substitutions for the original postulate.
Toward a NonEuclidean Geometry
Karl Friedrich Gauss, who was determined to obtain the proof of the fifth postulate since 1792, finally abandoned the attempt by 1813, following instead Saccheri's approach of adopting a parallel proposition that contradicted Euclid's. Eventually, Gauss came to the realization that geometries other than Euclidean were possible. His incursions into nonEuclidean geometry were shared only with a handful of similarminded correspondents.
Of all the founders of nonEuclidean geometry, Lobachevskii alone had the tenacity and persistence to develop and publish his new system of geometry despite adverse criticisms from the academic world. From a manuscript written in 1823, it is known that Lobachevskii was not only concerned with the theory of parallels, but he realized then that the proofs suggested for the fifth postulate "were merely explanations and were not mathematical proofs in the true sense."
Lobachevskii's deductions produced a geometry, which he called "imaginary, " that was internally consistent and harmonious yet different from the traditional one of Euclid. In 1826, he presented the paper "Brief Exposition of the Principles of Geometry with Vigorous Proofs of the Theorem of Parallels." He refined his imaginary geometry in subsequent works, dating from 1835 to 1855, the last being Pangeometry. Gauss read Lobachevskii's Geometrical Investigations on the Theory of Parallels, published in German in 1840, praised it in letters to friends, and recommended the Russian geometer to membership in the Göttingen Scientific Society. Aside from Gauss, Lobachevskii's geometry received virtually no support from the mathematical world during his lifetime.
In his system of geometry Lobachevskii assumed that through a given point lying outside the given line at least two straight lines can be drawn that do not intersect the given line. In comparing Euclid's geometry with Lobachevskii's, the differences become negligible as smaller domains are approached. In the hope of establishing a physical basis for his geometry, Lobachevskii resorted to astronomical observations and measurements. But the distances and complexities involved prevented him from achieving success. Nonetheless, in 1868 Eugenio Beltrami demonstrated that there exists a surface, the pseudosphere, whose properties correspond to Lobachevskii's geometry. No longer was Lobachevskii's geometry a purely logical, abstract, and imaginary construct; it described surfaces with a negative curvature. In time, Lobachevskii's geometry found application in the theory of complex numbers, the theory of vectors, and the theory of relativity.
Philosophy and Outlook
The failure of his colleagues to respond favorably to his imaginary geometry in no way deterred them from respecting and admiring Lobachevskii as an outstanding administrator and a devoted member of the educational community. Before he took over his duties as rector, faculty morale was at a low point. Lobachevskii restored Kazan University to a place of respectability among Russian institutions of higher learning. He cited repeatedly the need for educating the Russian people, the need for a balanced education, and the need to free education from bureaucratic interference.
Tragedy dogged Lobachevskii's life. His contemporaries described him as hardworking and suffering, rarely relaxing or displaying humor. In 1832 he married Varvara Alekseevna Moiseeva, a young woman from a wealthy family who was educated, quicktempered, and unattractive. Most of their many children were frail, and his favorite son died of tuberculosis. There were several financial transactions that brought poverty to the family. Toward the end of his life he lost his sight. He died at Kazan on Feb. 24, 1856.
Recognition of Lobachevskii's great contribution to the development of nonEuclidean geometry came a dozen years after his death. Perhaps the finest tribute he ever received came from the British mathematician and philosopher William Kingdon Clifford, who wrote in his Lectures and Essays, "What Vesalius was to Galen, what Copernicus was to Ptolemy, that was Lobachevsky to Euclid."
Further Reading
There is no definitive biography of Lobachevskii in English. Useful works include E.T. Bell, Men of Mathematics (1937); Veniamin F. Kagan, N. Lobachevsky and His Contributions to Science (trans. 1957); and Alexander S. Vucinich, Science in Russian Culture, vol. 1: A History to 1860 (1963). Valuable for treating Lobachevskii's geometry in historical perspective are Roberto Bonola, NonEuclidean Geometry: A Critical and Historical Study of Its Developments (trans. 1955); A. D. Aleksandrov, "NonEuclidean Geometry, " in Mathematics: Its Content, Methods, and Meaning, vol. 3, edited by A.D. Aleksandrov, A. N. Kolmogorov, and M.A. Lavrentev (trans. 1964); and Carl B. Boyer, A History of Mathematics (1968). □
Cite this article
Pick a style below, and copy the text for your bibliography.

MLA

Chicago

APA
"Nikolai Ivanovich Lobachevskii." Encyclopedia of World Biography. . Encyclopedia.com. 21 Sep. 2018 <http://www.encyclopedia.com>.
"Nikolai Ivanovich Lobachevskii." Encyclopedia of World Biography. . Encyclopedia.com. (September 21, 2018). http://www.encyclopedia.com/history/encyclopediasalmanacstranscriptsandmaps/nikolaiivanovichlobachevskii
"Nikolai Ivanovich Lobachevskii." Encyclopedia of World Biography. . Retrieved September 21, 2018 from Encyclopedia.com: http://www.encyclopedia.com/history/encyclopediasalmanacstranscriptsandmaps/nikolaiivanovichlobachevskii
Citation styles
Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).
Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.
Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the mostrecent information available at these sites:
Modern Language Association
The Chicago Manual of Style
http://www.chicagomanualofstyle.org/tools_citationguide.html
American Psychological Association
Notes:
 Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
 In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.
Lobachevsky, Nikolai Ivanovich
LOBACHEVSKY, NIKOLAI IVANOVICH
(1792–1856), mathematician; creator of the first nonEuclidean geometry.
Nikolai Lobachevsky was born in Nizhny Novgorod to the family of a minor government official. In 1809 he enrolled in Kazan University, selecting mathematics as his major field. From Martin Bartels and Franz Bronner, German immigrant professors, he learned the fundamentals of trigonometry, analytical geometry, celestial mechanics, differential calculus, the history of mathematics, and astronomy. Bronner also introduced him to the current controversies in the philosophy of science.
In 1811 Lobachevsky was granted a magisterial degree, and three years later he was appointed instructor in mathematics at Kazan University. His first teaching assignment was trigonometry and number theory as advanced by Carl Friedrich Gauss. In 1816 he was promoted to the rank of associate professor. In 1823 he published a gymnasium textbook in geometry and, in 1824, a textbook in algebra.
Lobachevsky's strong interest in geometry was first manifested in 1817 when, in one of his teaching courses, he dwelt in detail on his effort to adduce proofs for Euclid's fifth (parallel) postulate. In 1826, at a faculty meeting, he presented a paper that showed that he had abandoned the idea of searching for proofs for the fifth postulate; in contrast to Euclid's claim, he stated that more than one parallel could be drawn through a point outside a line. On the basis of his postulate, Lobachevsky constructed a new geometry including, in some opinions, Euclid's creation as a special case. Although the text of Lobachevsky's report was not preserved, it can be safely assumed that its contents were repeated in his "Elements of Geometry," published in the Kazan Herald in 1829–1830. In the meantime, Lobachevsky was elected the rector of the university, a position he held until 1846.
In order to inform Western scientists about his new ideas, in 1837 Lobachevsky published an article in French ("Geometrie imaginaire") and in 1840 a small book in German (Geometrische Untersuchungen zur Theorie der Parallellinien ). His article "Pangeometry" appeared in Russian in 1855 and in French in 1856, the year of his death. At no time did Lobachevsky try to invalidate Euclid's geometry; he only wanted to show that there was room and necessity for more than one geometry. After becoming familiar with the new geometry, Carl Friedrich Gauss was instrumental in Lobachevsky's election as an honorary member of the Gottingen Scientific Society.
After the midnineteenth century, Lobachevsky's revolutionary ideas in geometry began to attract serious attention in the West. Eugenio Beltrami in Italy, Henri Poincare in France, and Felix Klein in Germany contributed to the integration of nonEuclidean geometry into the mainstream of modern mathematics. The English mathematician William Kingdon Clifford attributed Copernican significance to Lobachevsky's ideas.
On the initiative of Alexander Vasiliev, professor of mathematics, in 1893 Kazan University celebrated the centennial of Lobechevsky's birth. On this occasion, Vasiliev presented a lengthy paper explaining not only the scientific and philosophical messages of the first nonEuclidean geometry but also their growing acceptance in the West. At this time, Kazan University established the Lobachevsky Prize, to be given annually to a selected mathematician whose work was related to the Lobachevsky legacy. Among the early recipients of the prize were Sophus Lie and Henri Poincaré.
In 1926 Kazan University celebrated the centennial of Lobachevsky's nonEuclidean geometry. All speakers placed emphasis on Lobachevsky's influence on modern scientific thought. Alexander Kotelnikov advanced important arguments in favor of close relations of Lobachevsky's geometrical propositions to Einstein's general theory of relativity. Lobachevsky also received credit for a major contribution to modern axiomatics and for proving that entire sciences could be created by logical deductions from assumed propositions.
See also: academy of sciences
bibliography
Kagan, V. N. (1952). N. I. Lobachevsky and His Contributions to Science. Moscow: Foreign Languages Publishing House.
Vucinich, Alexander. (1962). "Nikolai Ivanovich Lobachevskii: The Man Behind the First NonEuclidean Geometry." ISIS 53:465–481
Alexander Vucinich
Cite this article
Pick a style below, and copy the text for your bibliography.

MLA

Chicago

APA
"Lobachevsky, Nikolai Ivanovich." Encyclopedia of Russian History. . Encyclopedia.com. 21 Sep. 2018 <http://www.encyclopedia.com>.
"Lobachevsky, Nikolai Ivanovich." Encyclopedia of Russian History. . Encyclopedia.com. (September 21, 2018). http://www.encyclopedia.com/history/encyclopediasalmanacstranscriptsandmaps/lobachevskynikolaiivanovich
"Lobachevsky, Nikolai Ivanovich." Encyclopedia of Russian History. . Retrieved September 21, 2018 from Encyclopedia.com: http://www.encyclopedia.com/history/encyclopediasalmanacstranscriptsandmaps/lobachevskynikolaiivanovich
Citation styles
Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).
Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.
Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the mostrecent information available at these sites:
Modern Language Association
The Chicago Manual of Style
http://www.chicagomanualofstyle.org/tools_citationguide.html
American Psychological Association
Notes:
 Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
 In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.
Lobachevsky, Nikolai Ivanovich
Nikolai Ivanovich Lobachevsky (nyĬkəlī´ ēvä´nəvĬch ləbəchĕf´skē), 1793–1856, Russian mathematician. A pioneer in nonEuclidean geometry, he challenged Euclid's fifth postulate that one and only one line parallel to a given line can be drawn through a fixed point external to the line; he developed, independently of János Bolyai, a selfconsistent system of geometry (hyperbolic geometry) in which that postulate was replaced by one allowing more than one parallel through the fixed point. Lobachevsky first announced his system in 1826; he subsequently wrote several expositions of it, including Geometrical Researches on the Theory of Parallels (originally pub. 1840 in German; tr. 1891, 1914), and a statement of his completed work, Pangéométrie (issued 1855 in Russian and French). A graduate of the Univ. of Kazan, he remained there as teacher (1812), professor (1816), and rector (1827). Despite his efficient and devoted service, in 1846 he was relieved by the government of his posts of professor and rector.
Cite this article
Pick a style below, and copy the text for your bibliography.

MLA

Chicago

APA
"Lobachevsky, Nikolai Ivanovich." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. 21 Sep. 2018 <http://www.encyclopedia.com>.
"Lobachevsky, Nikolai Ivanovich." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. (September 21, 2018). http://www.encyclopedia.com/reference/encyclopediasalmanacstranscriptsandmaps/lobachevskynikolaiivanovich
"Lobachevsky, Nikolai Ivanovich." The Columbia Encyclopedia, 6th ed.. . Retrieved September 21, 2018 from Encyclopedia.com: http://www.encyclopedia.com/reference/encyclopediasalmanacstranscriptsandmaps/lobachevskynikolaiivanovich
Citation styles
Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).
Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.
Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the mostrecent information available at these sites:
Modern Language Association
The Chicago Manual of Style
http://www.chicagomanualofstyle.org/tools_citationguide.html
American Psychological Association
Notes:
 Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
 In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.