Stephenson, George (1781–1848)

views updated

STEPHENSON, GEORGE (1781–1848)

Many successful people are inspired by their parents and George Stephenson was no exception. In modern day vernacular, his father had one of the "coolest jobs in town" in the small village of Wylam, on the River Tyne, eight miles west of Newcastle, England, where George was born. Robert Stephenson raised his family in a primitive dwelling while serving as the pumping engine fireman at the local colliery, keeping the mines free of water. The company's coal wagon passed very close to the family's front door, helping George make up for his lack of formal education with up close and very personal attentiveness.

When George was eight yeas old, the mine's pumping engine broke down and work temporarily ceased, forcing his father to move the family in search of work. With the impact of engines permanently etched in his mind, the young boy began to make clay models in great detail, simulating his father's machines. Unknowingly, he was destined to study engines for the rest of his life. Defying parental wishes to take up farming, at age thirteen he joined his brother James as a picker in another mine. Working his way up the ladder at the Black Callerton mine, George began driving an engine and by seventeen he earned the position of assistant engine fireman—higher than any post his father had ever attained.

He was eventually promoted to engineman—or plugman—which required intricate engine knowledge and skills. He quickly learned to devote all his free time to the study and care of his engines, tearing down and rebuilding them to better understand their inner workings.

He became interested in stories about James Watt and Matthew Boulton but faced a significant hurdle: at the age of eighteen, he was still unable to read. He began reading lessons with a young schoolmaster, Robin Cowens, and then, to further his knowledge of engineering, was tutored in math by Andrew Robertson, a Scottish mathematician.

George earned the prestigious position of brakesman at the Dolly Pit colliery, responsible for the engine used for hauling coal out of the mines. He was married in 1802. During that year he made an unsuccessful attempt to build a perpetual motion machine. But he did gain respect in the community as an accomplished clock-mender.

In 1808, his career breakthrough came at the Killingworth High Pit, where he and two other brakesman contracted with management to work on a royalty basis, rather than a fixed weekly wage. The risk was offset by his ability to create mechanical engineering efficiencies, considered one of Stephenson's greatest strengths. Opportunity knocked in the form of a pumping engine built by John Smeaton that had been a complete failure during a period of twelve months. Approaching the investors, Stephenson made an audacious claim that he could have the engine running within a week. In fact, he did so in only three days of breakdown and reconstruction, acquiring great local renown and the true launching of his career as a self-taught "doctor of engines." Proving his flexibility, he drained an entire quarry with a unique miniature pump that he invented.

George continued his adult education with John Wigham, focusing on the areas of math and physics. In addition, he befriended an engineer, John Steele, who had apprenticed under Richard Trevithick in the building of a successful locomotive engine during 1803 to 1804.

Stephenson applied theories developed by others, including Ralph Allen's work on self-acting inclines, in which empty coal wagons were pulled up a track, powered by full wagons moving downhill. Other inventions included a winding-engine and new design for pumping engines, before turning his attention to the self-propelled steam engine.

In the early nineteenth century, hardly anyone imagined that passenger transportation would evolve, concentrating instead on the need to transport coal. Most of the inventiveness applied before Stephenson was to reduce track friction, allowing horses to pull more load. There were even experiments in the seventeenth century by Sir Humphrey Mackworth to build a wind-powered land-ship, which were disappointing due to the inevitable limits of nature. The first successful steam locomotive was built by French engineer Cugnot in 1763. Designed for war, its top speed was a paltry two and one-half miles per hour, with endurance of only fifteen minutes. There were numerous failures for the rest of the century, hampered by persistent attempts to operate them on roads.

It is noteworthy that William Murdock achieved significant progress in the 1780s, despite discouraging remarks by James Watt and his partner, Matthew Bolton, who thought that steam locomotion was impractical. This chiding among rivals was common and it seemed that personal credibility was sometimes as important as genius. When Trevithick did his brilliant work with locomotives, his eccentricities and irascibility deterred his acceptance, as did his unbusinesslike and unprofessional nature. Stephenson's predecessors who did earn credibility, however, were William Hedley and aide, Timothy Hackworth, at coal mines in the Newcastle area.

George Stephenson was not truly the inventor of railways or steam locomotives. But, like Thomas Newcomen and his work with the first practical atmospheric steam engine, George and his son, Robert, were the first to use concentrated imagination to turn existing work and theory into fully functional locomotive engines on rails. The Stephensons made the greatest contribution toward the building of the British railway system.

George Stephenson's first engine, named the Blucher, took ten months to complete, and first operated on the Killingworth Railway on July 25, 1814. His most notable achievement was building the Liverpool to Manchester railway, that featured thirty miles of track and sixty-three bridges. The most famous locomotive ever built—"The Rocket"—was actually designed and made by his son, Robert, although its most serious fault was reconfigured by George, who approved all concepts of design and manufacture.

Despite their growing reputation, there was great resistance at times to the Stephensons' locomotive building, most notably among farmers. Although the noise that scared animals was largely reduced, there was an economic concern to farmers—if steam trains and carriages succeeded, there would be less demand for horses and less demand to grow oats to feed them. But technological progress prevailed, even if it was often settled in court.

In addition to George's acclaimed work with locomotives, he and his son Robert designed numerous contraptions such as a scarecrow with wind-aided arms, a sundial, an oil light that burned underwater, and an automatic cradle rocker. While George Stephenson derived immediate satisfaction from his mechanical accomplishments, there is some evidence that he resented or disdained the public acclaim through his rejection of invitations to join the Royal Society or to accept Knighthood. Despite his brilliance, his relative late education kept him from feeling socially accepted. This may have started with a grudge as early as 1815, when he lost out in a patent dispute with a more privileged rival over a safety lamp that George invented.

Nonetheless, Stephenson realized that he had a great impact on society and finished his career as a traveling consultant in engineering. He was known to dine with kings, such as the King of Belgium, and richly earned his permanent place in the annals of industrial history.

Dennis R. Diehl

See also: Steam Engines; Turbines, Steam.

BIBLIOGRAPHY

Rolt, L.T.C. and Allen, J. S. (1997). The Steam Engine of Thomas Newcomen. Ashbourne, UK: Landmark Publishing.

Rowland, J. (1954). George Stephenson: Creator of Britain's Railways. Long Acre, London, Odhams Press Limited.11

About this article

Stephenson, George (1781–1848)

Updated About encyclopedia.com content Print Article