Skip to main content

Communities in Space

Communities in Space

In 1929 Hermann Noording developed the idea of a large wheel-shaped satellite reminiscent of the space station in the movie 2001: A Space Odyssey (1968). In the 1950s Wernher von Braun developed a similar plan for a refueling stop on the way to the Moon. But it was Princeton physicist Gerard K. O'Neill who saw huge orbiting communities as a means of salvation for Earth. Overcoming initial skepticism, he gained support from the National Aeronautics and Space Administration (NASA), organized a series of breakthrough workshops, and set forth detailed plans in his 1976 book The High Frontier. Although everyone at that time talked in terms of "space colonies," "colonies," and "colonists," these words evoke images of harsh and repressive governments. For this reason, the terms "settlements" and "settlers" are preferred instead.

Solving Earth's Problems in Outer Space

Like most proponents of large-scale emigration to space, O'Neill believed that the world, with its rapidly growing population, was entering an era of decline. He noted the heavy consumption of fossil fuels and other resources as well as growing concern about environmental pollution and global warming. By establishing humans in space it will be possible to reduce population pressures on Earth and draw upon the immense natural resources that are available on the high frontier.

O'Neill did not see the Moon or Mars as good destinations for wholesale emigration from Earth. The Moon is small, and it is expensive and timeconsuming to get to Mars. Sunlight, the source of power and life, would not be readily available during the two-week lunar night and it would be difficult to collect on Mars. Instead, he recommended human-made communities conveniently located between Earth and the Moon where people could build as many huge settlements as was needed, 500 if necessary.

Islands in the Sky

O'Neill set forth detailed, phased plans for developing a series of successively larger space settlements. The first construction crews would work out of an orbiting construction shack and at a base on the Moon where they would strip-mine building materials. A device known as a mass driver, which uses electromagnetic propulsion, would accelerate lunar material along a long track. This material, sliced into shapes reminiscent of large, thick plates, would break free of the Moon's weak gravity, and fly through space to be caught at the construction site. There the material could be used like bricks or transformed into other useful materials.

O'Neill envisioned three "islands," ranging from a sphere about 1.6 kilometers (1 mile) in circumference to a cylinder 6.4 kilometers (4 miles) in diameter and 32 kilometers (20 miles) long. These islands would house between 10,000 and tens of millions of people. A shield would protect each community from meteors and space debris. Windows and mirrors would fill their interiors with sunlight, and a slow spin would produce artificial gravity. These settlements would be safe from disasters, such as earthquakes and inclement weather, including storms, monsoons, droughts, heat waves, and cold snaps. Insects and other vermin would be left behind on Earth. Clean technologies could prevent pollution and minimize problems associated with environmental health. Settlers would grow their own food (primarily grains and vegetables) and earn money by collecting solar power that would be beamed to Earth.

O'Neill's contribution to the development of space stations involved more than an exploration of the physics and engineering involved: He moved space colony design into the realm of the possible. He attracted support from scientists in many fields and from members of the public who had never before given space settlement serious thought. This interest was sustained in later NASA Ames projects that led to many different designs, which included settlements shaped like doughnuts and paddlewheels. O'Neill's influence is evident in one of the most detailed, bold, and imaginative plans for establishing humans as citizens of the universe. This plan is set forth in Marshall Savage's 1994 book The Millennial Project: Colonizing the Galaxy in Eight Easy Steps.

Making Space Settlements User-Friendly

Early settlers will be a hardy lot. Traditionally, military personnel have been the first to enter new, unusual, and potentially dangerous environments. In recent times, scientists and entrepreneurs have come next. One might expect strong, restless, highly motivated people to followthe kinds of people who stowed away on ships from Europe and Asia to build new lives in America. In the long run, to establish a permanent human presence in space, settlements will have to be accessible to everyone. Ultimately, they must be inviting communities, not just rough work camps.

Thus, designers avoid the cold, sterile, mechanical look. Some designs incorporate varied architecture, distant horizons, and the use of colors and light to open up areas. They make allowance for ornamental vegetation, including trees, shrubs, and hanging plants. To create a friendly look, buildings may be set off at angles rather than aligned with military precision. Clustering buildings, orienting entrances and exits in different ways, and developing common areas such as neighborhood parks will make it easy for residents to meet, mingle, and develop a sense of community.

The visionaries who foresee space settlements include not just scientists and engineers but social architects as well. Their goal is to establish minimal, low-profile governments that intervene as little as possible. Democracy is the preferred form of government, and "bureaucracy" is considered a bad word. And, as one might suspect, few space settlement enthusiasts propose paying taxes to authorities on Earth.

A Cloudy Crystal Ball

In their 1986 book Pioneering Space, James and Alcestis Oberg include a NASA artist's rendition of a huge American space station along with a photograph of a real Russian Salyut station. The flowing lines, spaciousness, and aesthetic appeal of the artist's rendition stand in stark contract to the functional, cluttered look of the real thing. Some day it may be possible to construct large, attractive settlements in space. However, people are notorious for tampering with other people's ideas. Between today's planning efforts and tomorrow's space settlements both technology and people will change. There may be many slips between today's visions and tomorrow's realities.

see also Earth Why Leave? (volume 4); Governance (volume 4); Hotels (volume 4); Living on Other Worlds (volume 4); O'Neill Colonies (volume 4); O'Neill, Gerard P. (volume 4); Settlements (volume 4).

Albert A. Harrison


Harrison, Albert A. Spacefaring: The Human Dimension. Berkeley: University of California Press, 2001.

Oberg, James E., and Alcestis Oberg. Pioneering Space: Living on the Next Frontier. New York: McGraw-Hill, 1986.

O'Neill, Gerard K. The High Frontier: Human Colonies in Space. New York: Morrow,1976; Bantam Books, 1978; Collectors Guide Publishing, 2000.

Savage, Marshall. The Millennial Project: Colonizing the Galaxy in Eight Easy Steps. Boston: Little, Brown, 1994.

Schmidt, Stanley, and Robert Zubrin, eds. Islands in the Sky: Bold New Ideas for Colonizing Space. New York: John Wiley & Sons, 1996.

Zubrin, Robert. Entering Space: Creating a Spacefaring Civilization. New York: J. P.Tarcher, 2000.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Communities in Space." Space Sciences. . 17 Aug. 2018 <>.

"Communities in Space." Space Sciences. . (August 17, 2018).

"Communities in Space." Space Sciences. . Retrieved August 17, 2018 from

Learn more about citation styles

Citation styles gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, cannot guarantee each citation it generates. Therefore, it’s best to use citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

The Chicago Manual of Style

American Psychological Association

  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.