Skip to main content

Black Holes

Black Holes

Black holes are objects for which the gravitational attraction is so strong that nothing, not even light, can escape from it. They exist in the universe in large numbers.

Albert Einstein's theory of general relativity explains the properties of black holes.* The material inside a black hole is concentrated into a singularity: a single point of infinitely high density where space and time are infinitely distorted. Distant objects can escape from a black hole's gravitational pull, but objects inside the so-called event horizon inevitably fall toward the center (such objects would have to move faster than light to escape, which is impossible according to the laws of physics). The size of the event horizon and the distortions of the space and time surrounding it are determined by the mass and spin (rate of rotation) of the black hole. Space and time distortions cause unusual effects; for example, a clock falling into a black hole will be perceived by a distant observer to become redder and to run slower.

Two types of black holes are found in the universe: stellar-mass black holes and supermassive black holes. They are characterized by different masses and formation mechanisms.

A stellar-mass black hole forms when a heavy star collapses under its own weight in a supernova explosion. This happens after the nuclear fuel, which makes the star shine for millions of years, is exhausted. The resulting black hole is a little heavier than the Sun and has an event horizon a few miles across (for comparison, to turn Earth into a black hole it would have to be squeezed into the size of a marble). The existence of such black holes has been inferred in cases where the black hole pulls gas of a companion star that orbits around it. The gas heats up as it falls towards the black hole and then produces X rays that can be observed with Earth-orbiting satellites.

Supermassive black holes are found in the centers of galaxies that contain billions of stars. They may exist in most galaxies and probably formed at the same time as the galaxies themselves. They are millions or billions times as heavy as the Sun, as determined from the motions of stars and gas surrounding them. Spectacular activity can occur when gas falls onto the black hole (as observed in a few percent of all galaxies). Material is ejected in jets that emit radio waves, and the heated gas produces X-ray emission. Observations of such X rays may soon provide insight into the spin of black holes.

There are enough black holes in the universe that there should occasionally be collisions between them. Such violent events send ripples through the space-time fabric of the universe. Scientists are hoping to soon detect such "gravitational waves" for the first time.

English physicist Steven Hawking showed in 1974 that every black hole spontaneously and continuously loses a tiny fraction of its mass because of radiation. This Hawking radiation, however, is negligible for the known black holes in the universe and will not be detectable in the foreseeable future.

see also Einstein, Albert (volume 2); Gravity (volume 2); Stars (volume 2); Supernova (volume 2).

Roeland P. van der Marel


Begelman, Mitchell, and Martin Rees. Gravity's Fatal Attraction: Black Holes in the Universe. New York: Scientific American Library, 1996.

Couper, Heather, and Nigel Henbest. Black Holes. New York: DK Publishing, 1996.

Thorne, Kip S. Black Holes and Time Warps: Einstein's Outrageous Legacy. New York: W.W. Norton & Company, 1995.

*Einstein was a renowned theoretical physicist, whose theory of special relativity produced what is arguably the most well-known equation in science: E=mc2.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Black Holes." Space Sciences. . 18 Aug. 2018 <>.

"Black Holes." Space Sciences. . (August 18, 2018).

"Black Holes." Space Sciences. . Retrieved August 18, 2018 from

Learn more about citation styles

Citation styles gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, cannot guarantee each citation it generates. Therefore, it’s best to use citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

The Chicago Manual of Style

American Psychological Association

  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.