Skip to main content

Geocentric Theory

Geocentric Theory


Rejected by modern science, the geocentric theory (in Greek, ge means earth), which maintained that Earth was the center of the universe, dominated ancient and medieval science. It seemed evident to early astronomers that the rest of the universe moved about a stable, motionless Earth. Because the sun, moon, planets, and stars could be seen moving about Earth along circular paths day after day, it seemed a reasonable assumption, for nothing seemed to make it move. Even the fact that objects fell toward Earth provided support for the geocentric theory. Finally, geocentrism was in keeping with the theocentric (Godcentered) world view dominant in the Middle Ages, when science was a subfield of theology.

Greek astronomers assumed that the celestial bodies moving about Earth followed perfectly circular paths. This was not a random assumption: the circle was regarded by Greek mathematicians and philosophers as the perfect geometric figure and consequently the only one appropriate for celestial motion. However, as astronomers observed, the patterns of celestial motion were not constant. The moon rose about an hour later from one day to the next, and its path across the sky changed from month to month. The suns path, too, changed with time, and even the configuration of constellations changed from season to season.

These changes could be explained by the varying rates at which the celestial bodies revolved around the Earth. However, the planets (which got their name from the Greek word planetes, meaning wanderer and subject of error), behaved in ways that were difficult to explain. Sometimes these wanderers showed retrograde motionthey seemed to stop and move in reverse when viewed against the background of the

distant constellations, or fixed stars, which did not move relative to one another.

To explain the motion of the planets, Greek astronomers, whose efforts culminated in the work of Claudius Ptolemy (AD c. 90-168), devised complicated models in which planets moved along circles (epicycles) that were superimposed on circular orbits about the Earth. These geocentric models were able to explain, for example, why Mercury and Venus never move more than 28° and 47° respectively from the sun.

As astronomers improved their methods of observation and measurement, the models became increasingly complicated, with constant additions of epicycles. While these complex models succeeded in explaining retrograde motion, they reportedly prompted Alfonso X (1221-1284), king of Castile, to remark that had God asked his advice while engaging in Creation, he would have recommended a simpler design for the universe.

Nonetheless, the geocentric theory persisted because it worked.

The scientific refutation of geocentrism began with the work of the Polish astronomer Nicolaus Copernicus (1473-1543). In Commentariolus, a short work composed around 1514, Copernicus first suggested a replacement for the replacement for the geocentric system. According to Copernicus, who fully developed his ideas in De revolutionibus orbium coelestium (1543), known as On the Revolution of the Celestial Spheres, a heliocentric theory could explain the motion of celestial bodies more simply than the geocentric view. In the Copernican model, Earth orbits the sun along with all the other planets. Such a model can explain the retrograde motion of a planet without resorting to epicycles, and can also explain why Mercury and Venus never stray more than 28° and 47° from the sun.

Copernicuss work did not spell the demise of geocentrism, however. The Danish astronomer Tycho Brahe (1546-1601), a brilliant experimental scientist whose measurements of the positions of the stars and planets surpassed any that were made prior to the invention of the telescope, proposed a model that attempted to serve as a compromise between the geocentric explanation and the Copernican theory. His careful observation of a comet led him to the conclusion that the comets orbit could not be circular; but despite this insight, he was unable to abandon the geocentric system. Instead, he proposed a model that preserved the ancient geometric structure, but suggested that all the planets except Earth revolved around the sun, which, in accordance with the geocentric view, carried all the planets with it, and still moved about the Earth.

After Galileo (1564-1642) built a telescope and turned it toward the heavens, evidence supporting a heliocentric model started to accumulate. Through his refracting (using lenses to form images), Galileo saw that Venus and Mercury go through phases similar to those of the moon. The geocentric model could not fully explain these changes in the appearance of the inferior planets (those between Earth and the sun). Furthermore, Galileos observations of Jupiters moons made it clear that celestial bodies do move about centers other than Earth.

Around the time when Galileo began to survey the skies with his telescope, Johannes Kepler (1571-1630), a remarkable mathematician and theoretical astronomer, used Brahes precise measurements to determine the exact paths of the planets. Kepler was able to show that the planets did not move along circular paths, but rather that each planet followed an elliptical course, with the sun at one focus of the ellipse. The fact that the planets orbits about the sun are ellipses became known as Keplers first law. His second law states that for each planet, an imaginary line connecting the planet to the sun sweeps out equal areas in equal times; and the third law, later used by Isaac Newton (1642-1727) to establish the universal law of gravitation, reveals that the ratio of the cube of a planets semimajor axis to the square of its period (the time needed to make one revolution) is a constant; that is, the ratio is the same for all the planets. By the time Newton established the laws of motionlaws that he demonstrated to be valid for both celestial and earthly objectsthere was no doubt that the workings of the solar systems clearly invalidated the geocentric model.

See also Celestial mechanics.



Bacon, Dennis Henry, and Percy Seymour. A Mechanical History of the Universe. London: Philip Wilson Publishing, Ltd., 2003.

Hancock P.L., and B.J., Skinner eds. The Oxford Companion to the Earth. Oxford: Oxford University Press, 2000.

Kirkpatrick, Larry D., and Gerald F. Wheeler. Physics: Building a World View. Englewood Cliffs, NJ: Prentice-Hall, 1983.

Winchester, Simon, and Soun Vannithone. The Map That Changed the World: William Smith and the Birth of Modern Geology. New York: Perennial, 2002.


University of Oregon, Department of Physics. Planets and the Celestial Sphere <>(October 7, 2006).

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Geocentric Theory." The Gale Encyclopedia of Science. . 10 Sep. 2018 <>.

"Geocentric Theory." The Gale Encyclopedia of Science. . (September 10, 2018).

"Geocentric Theory." The Gale Encyclopedia of Science. . Retrieved September 10, 2018 from

Learn more about citation styles

Citation styles gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, cannot guarantee each citation it generates. Therefore, it’s best to use citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

The Chicago Manual of Style

American Psychological Association

  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.