School Learning

views updated

SCHOOL LEARNING

School learning is the acquisition of knowledge, subject matter, information, understanding, and skill from teaching. Research on learning and memory provides teachers with essential scientific knowledge that is useful for understanding and improving school learning.

What Can Be Learned from Teachers?

Schools and teachers have made much progress in the teaching of complex subject matter. Today teachers teach difficult subjects, such as calculus in high school, that were previously thought to be impossible for students of that age to learn. Even the learning of expert performance involves intensive work with teachers. See Ericsson and Charness (1994) and Ericsson, Krampe, and Tesch-Romer (1993) for discussions of expert performance.

Ancient and Modern Conceptions of Learning

Modern conceptions of learning originated in ancient Greece and Rome. Since Socrates tried to teach a slave boy the Pythagorean theorem in the Meno by having him construct the theorem from innate ideas rather than by telling him the theorem, teachers and researchers have studied how students acquire, remember, and use knowledge. Plato's emphasis on constructive learning resembles modern conceptions of school learning that emphasize the importance of having students construct meaning by relating new concepts to familiar ideas called schemata or to memories of experience called scripts.

Aristotle wrote that students learn information by forming relations or associations between new information and previously learned information or concepts that are stored in memory as images. He believed that subject matter and other abstract information are logically organized in memory into hierarchies that consist of classes, or general concepts, divided into species, or smaller groups. His ideas about hierarchically organized abstract verbal information resemble modern understanding of the organization of semantic memory (Kintsch, 1980). Aristotle's ideas about associations underlie much of modern thinking about how to enhance learning, retention, and understanding in schools by teaching students to associate new information and prior knowledge through the use of imagery and verbal processes.

Aristotle influenced school learning in ancient times, when memory-training systems (mnemonics)—many of them similar to present-day techniques—were taught to students, orators, and statesmen (Cicero, 1967). In the Middle Ages, Aristotle's ideas about forming associations between new and familiar concepts influenced the widespread use of statues, paintings, mosaics, and murals to relate various abstract moral concepts to familiar contexts. Modern conceptions—of school learning as association building and knowledge acquisition as the construction of hierarchically organized relations between new and old information—still reflect these ancient ideas of Plato and Aristotle.

How Students Learn Individually and in Groups

Recent research in educational psychology, cognitive psychology, and neuropsychology helps us to understand how memory, knowledge acquisition, attention, learning strategies, and metacognition (self-control of learning) influence school learning. This research shows the importance of getting students to attend to the information to be learned, to relate it actively to their knowledge and experience, and to use it to solve problems. The research also shows that students can learn "how to learn" (learning strategies) and can learn to control and to monitor their own learning (metacognition).

Most such research focuses on how students learn when they work individually with teachers, mentors, and coaches. However, recent research on situative learning emphasizes social context, viewing learning as the product of systems of group interaction (Greeno, Collins, and Resnick, 1996). Research on group learning in schools has begun to identify the conditions best suited to conceptual learning by cooperative groups. Cohen (1994) finds that cooperative groups interact well in tasks that require cooperation, present loosely structured problems, provide pre-training in group work, and impose little direct teacher supervison. Cooperative group learning can play an important role in achievement in concept learning. For example, Kourilsky and Wittrock (1992) found that by working in cooperative groups, high school students increased their learning of concepts in economics by 30 percent when they generated relations between their experience and the abstract subject matter.

Memory

The information students have organized into schemata in their semantic (abstract and verbal) memory and into scripts in their episodic (concrete and imaginal) memory influences their learning and comprehension. In schools, teaching procedures focus on building relations between these semantic and episodic types of information in memory and the new information to be learned. Mining these relations boosts memory or comprehension or both.

Learning to Remember Facts

Factual information—dates, names, places, and so on—is often difficult to remember because it seems to bear little relation to other information of interest or importance to students. Memory for factual information improves when learners construct relations, even arbitrary ones, between their semantic or episodic memories and the facts to be learned. Mnemonic systems are built on that principle. For example, lists of words can be remembered in order by forming images between the words on the list and mnemonic words organized into a series (e.g., one is a bun, two is a shoe). Capitals of states can be remembered by forming colorful or comic associations between the name of the state and its capital city (Levin, 1985). The objective of this procedure is to make the learning of facts meaningful in some way, much as Aristotle and Cicero did with mnemonic devices.

Acquiring Knowledge in School

Knowledge acquisition requires understanding and comprehension of what one has learned. Research on reading comprehension and science learning shows the importance of schemata (Rumelhart, 1980) and student preconceptions (Wittrock, 1994) in determining what students will understand and how their comprehension can be improved. For example, when students read a passage from a new perspective, they can comprehend it differently.

Elementary school students' preconceptions about concepts in science influence their comprehension in school. Students who have unscientific conceptions of electricity often have difficulty in learning how it functions. Students in elementary school and in high school also differ in their understanding of the composition of matter, such as gases. Benson, Wittrock, and Baur (1993) found that many students, even in high school, do not understand that gases are made of particles (molecules). It is important that teachers take into account such student preconceptions.

Research on the teaching of comprehension and the acquisition of knowledge in schools shows that students in schools acquire knowledge and increase their comprehension when they generate meanings for information, such as subject matter, stories, and concepts (Wittrock, 1998). The generation of summaries, pictures, inferences, applications, and examples is an effective way to organize information and to relate it to experience and knowledge stored in memory. Comprehension and understanding function best when students construct two types of relations: among the parts of the subject matter and between the subject matter and the learner's knowledge and experience (Wittrock, 1990). Both verbal processes (e.g., summaries and inferences) and imagery (pictures, graphs, and diagrams) enhance comprehension when students use them to construct these two types of relations.

Concise summaries that contain appropriate verbal and visual components (words and pictures), as opposed to mere written summaries, improve explanations and foster comprehension (Mayer et al., 1996). Student generation of summaries or of analogies as they read a text also can significantly increase comprehension without increasing the time needed to learn (Wittrock and Alesandrini, 1990). As with the facilitation of memory of factual information, the student's building of relations between memory and new information enhances school learning. However, with comprehension and understanding, these relations are less arbitrary, more organized, more meaningful, and more integrated with schemata and scripts (Grabowski, 1996).

Attention

Research in neuropsychology and in cognitive psychology shows the importance of attention in learning in schools. Long-term, voluntary attention (i.e., ability to focus one's thoughts on themes or concepts rather than classroom distractions) is especially important. Mentally retarded or learning-disabled children and some hyperactive children have trouble maintaining needed levels of attention in school. These children often can be taught to control their voluntary attention by learning "self-talk" strategies that emphasize the relevant learning task. Research on divided attention shows that learners can process two different tasks, especially familiar ones, at the same time if each of the tasks comes from a different sensory mode. But when both tasks simultaneously enter the same sensory register, e. g. the ears, only one message will receive much attention (Anderson, 1990).

In classrooms teachers can apply knowledge from research on attention to understand how objectives and questions enhance learning. Objectives and questions direct student attention in productive ways designed to stimulate learning. Clark and Wittrock (2000) discuss methods to facilitate attention. These methods include increasing motivation to attend, avoiding divided attention, directing attention by cueing important concepts, and providing advance organizers (coherent introductions).

Learning Strategies and Metacognition

Learning strategies are procedures for constructing relations across concepts and between new information and experience and knowledge (e.g., constructing summaries, inferences, and pictures). Metacognition is awareness of and control over one's thoughts (e.g., planning to use a comprehension strategy). Learning strategies and metacognition often produce large increases in comprehension and knowledge acquisition when students learn to plan and to monitor their thinking and studying, to control their attention, and to use comprehension strategies such as analogy building and summarizing. Studies on teaching thinking skills, learning strategies, and metacognition show large gains—around 50 percent—in comprehension when students use learning strategies or metacognition in school (Mayer and Wittrock, 1996; Lambert and McCombs, 1998).

Conclusion

Modern research on learning and memory has greatly enhanced the understanding of school learning and its improvement. Unfortunately, the power and the utility of these research findings has only begun to affect teaching in the schools. There is a useful convergence between the ancient writings of Plato and Aristotle about constructive learning and association building and modern scientific research on learning and knowledge acquisition; both the ancient and modern precepts indicate that school learning involves the construction of meaning for new information by attending to it, organizing it, and relating it to one's knowledge and experience.

See also:ARISTOTLE; MNEMONIC DEVICES; PROSE RETENTION

Bibliography

Anderson, J. R. (1990). Cognitive psychology and its implications. New York: W. H. Freeman and Company.

Aristotle (1928). The works of Aristotle. Vol. 1, ed. W. D. Ross. Oxford: Clarendon Press.

—— (1964). On memory and recollection. In On the soul (De anima); Parva naturalia; and on breath, trans. W. S. Hett. Cambridge, MA: Harvard University Press.

Benson, D. L., Wittrock, M. C., and Baur, M. E. (1993). Students' preconceptions of the nature of gases. Journal of Research in Science Teaching 30, 587-597.

Cicero. (1967). De oratore, ed. E. W. Sutton, Cambridge, MA: Harvard University Press.

Clark, R., and Wittrock, M. C. (2000). Psychological principles in-training. In S. Tobias and J. D. Fletcher, eds., Training and retraining. New York: Macmillan.

Cohen, E. G. (1994). Restructuring the classroom: Conditions of productive small groups. Review of Educational Research 64, 1-35.

Ericsson, K. A., and Charness, N. (1994). Expert performance, its structure and acquisition. American Psychologist 49, 725-747.

Ericsson, K. A., Krampe, R. T., and Tesch-Romer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review 100, 363-406.

Grabowski, B. L. (1996). Generative learning. In D. H. Jonassen, ed., Handbook for Research on Educational Communications and Technology. New York: Macmillan.

Greeno, J. G., Collins, A. M., and Resnick, L. B. (1996). Cognition and learning. In D. C. Berliner and R. C. Calfee, eds., Handbook of educational psychology. New York: Simon & Schuster.

Kintsch, W. (1980). Semantic memory: A tutorial. In R. S. Nickerson, ed., Attention and performance, Vol. 8. Hillsdale, NJ: Erlbaum.

Kourilsky, M., and Wittrock, M. C. (1992). Generative teaching: An enhancement strategy for the learning of economics in cooperative groups. American Educational Research Journal 29, 861-876.

Lambert, N. M., and McCombs. B. L., eds. (1998). How students learn. Washington, DC: American Psychological Association.

Levin, J. R. (1985). Educational applications of mnemonic pictures: Possibilities beyond your wildest imagination. In A. A. Sheikh and K. S. Sheikh, eds., Imagery in education. Farmingdale, NY: Baywood.

Mayer, R. E., Bover, W., Bryman, A., Mars., R., and Tapangco, L. (1996). When less is more: Meaningful learning from visual and verbal summaries of science textbook lessons. Journal of Educational Psychology 88, 64-73.

Mayer, R. E., and Wittrock, M. C. (1996). Problem-solving transfer. In D. C.. Berliner and R. C. Calfee, eds., Handbook of educational psychology. New York: Simon & Schuster. Plato. Meno. Loeb Classical Library. Cambridge, MA: Harvard University Press.

Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. In R. J. Spiro, B. C. Bruce, and W. F. Brewer, eds., Theoretical issues in reading comprehension. Hillsdale, NJ: Erlbaum.

Wittrock, M. C. (1990). Generative processes of comprehension. Educational Psychologist 24, 345-376.

—— (1994). Generative science teaching. In P. J. Fensham, R. F. Gunstone, and R. T. White, eds., The content of science: A constructivist approach to its teaching and learning. London: Falmer Press.

—— (1998). Cognition and subject matter learning. In B. L. Mc Combs and N. Lambert, eds., How students learn. Washington, DC: American Psychological Association.

Wittrock, M. C., and Alesandrini, K. (1990). Generation of summaries and analogies and analytic and holistic abilities. American Educational Research Journal 27, 489-502.

M. C.Wittrock

About this article

School Learning

Updated About encyclopedia.com content Print Article