Skip to main content

Bunsen, Robert

Bunsen, Robert


Robert Wilhelm Bunsen, born in Göttingen, is often identified with the laboratory burner that bears his name. But to think of him only in relation to the Bunsen burner is to do him a disservice. Bunsen contributed widely to the development of many laboratory instruments, some of which helped to dramatically advance chemistry. His most important work was developing several techniques used to analyze chemical substances.

Born into an academic family and well-versed in many disciplines, Bunsen made chemistry his field of choice. After receiving his doctorate at the age of nineteen, Bunsen went on a partially government-funded tour throughout Europe, where he met many chemists and engineers. His travels provided him with a network of contacts that he used throughout his career. Upon his return and after teaching at several universities, he settled into a professorship at the University of Heidelberg in 1852, where he stayed until his retirement in 1889.

Bunsen was an avid experimentalist. He spent much of his time in the laboratory trying to discover the composition of chemical substances. His early research concerned the properties of arsenic and its compounds. In particular, the chemical composition of a certain class of chemicals, called cacodyls, was unknown. His experiments showed that cacodyls were oxides of arsenic. But Bunsen's work with arsenic nearly cost him his lifehe nearly killed himself through arsenic poisoning and lost the sight in one eye during his experiments with cacodyls.

As his research advanced to the studies of gases and alkali metals, Bunsen recognized the importance of developing new methods to analyze and identify chemical substances. The importance of quantitative analysis was realized in the late eighteenth century. Chemists needed to probe further into a substance's composition in order to help explain the physical world. Bunsen recognized this need and worked to develop new instruments for this purpose. For example, he invented new types of galvanic and carbonzinc electrochemical cells, or batteries, to isolate barium and sodium. He also constructed a new type of ice calorimeter that measured the volume, rather than the mass, of melted water. This allowed Bunsen to measure a metal's specific heat in order to find its atomic weight .

Bunsen's most lasting contribution to chemistry though was spectroscopy , which he developed in collaboration with the German physicist Gustav Kirchhoff. Bunsen became interested in analyzing the colors given off by heating chemicals to the point that they glowed. He heard that Kirchhoff was involved in similar work, and in 1854, Kirchhoff joined Bunsen at the University of Heidelberg. When Kirchhoff suggested that they observe the light being emitted from the elements by dispersing the light with a prism , the science of spectroscopy was born. When viewed through a prism, they found that the light was broken down into a series of lines, called spectral lines . Bunsen and Kirchhoff determined that the light emitted by each substance had its own unique pattern of spectral linesa discovery that led to the spectroscopic method of chemical analysis.

It was during the process of developing spectroscopy that the Bunsen burner came into being. Bunsen realized that the spectral patterns observed were being contaminated by the light coming from the burner they were using to heat the elements. He modified the burner he was working with by mixing air into the gas before burning in order to obtain a high temperature, nonluminous flame.

Using the new burner, Bunsen and Kirchhoff were able to clearly see the spectra of all the chemicals they were studying. Together, they catalogued the spectra of all the known elements. This aided chemists enormously, because by identifying their spectral patterns, chemists could determine the composition of any unknown substance. In the process of cataloguing the spectra of the elements, Bunsen and Kirchhoff discovered two new elements that they named after the colors of their spectral lines: cesium (blue) and rubidium (red). Using Bunsen and Kirchhoff's new analytical technique and the spectroscope they next developed, many new elements were subsequently discovered. But spectroscopy not only opened the door to the further analysis of earthly substances, the composition of the stars could also now be deduced.

Bunsen was a very modest man, despite being honored by some of Europe's most prestigious scientific institutions. In 1853 he was elected to the Chemical Society in London and to the Academie des Sciences in Paris. He was named a fellow of the Royal Society of London in 1858 and received its Copley Medal in 1860. Bunsen and Kirchhoff were together awarded the first Davy Medal in 1877 for their development of spectroscopy.

On his retirement in 1889, Bunsen turned his attention to another of his lifelong interests, geology. Bunsen's contributions to chemistry included not just the Bunsen burner, but also many other instruments that allowed the physical world to be seen in new and informative ways.

see also Spectroscopy.

Lydia S. Scratch


"Bunsen, Robert Wilhelm (18111899)." (2000). In World of Chemistry, ed. Robyn V. Young. Detroit: Gale Group.

Curtis, Theodor (1961). "Robert Bunsen." In Great Chemists, ed. Eduard Farber. New York: Interscience.

Internet Resources

Chemical Achievers. "Robert Wilhelm Eberhard Bunsen and Gustav Robert Kirchhoff." Available from <>.

Fujinaka, Pam, and Kerekes, Cristina. "Robert Wilhelm Bunsen (18111899)." Woodrow Wilson National Fellowship Foundation. Available from <>.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Bunsen, Robert." Chemistry: Foundations and Applications. . 15 Dec. 2018 <>.

"Bunsen, Robert." Chemistry: Foundations and Applications. . (December 15, 2018).

"Bunsen, Robert." Chemistry: Foundations and Applications. . Retrieved December 15, 2018 from

Learn more about citation styles

Citation styles gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, cannot guarantee each citation it generates. Therefore, it’s best to use citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

The Chicago Manual of Style

American Psychological Association

  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.