Dimensions
Dimensions
A dimension is a measurement of space. In a threedimensional world, we usually think of three different directions as we measure the space in which we exist—length, width, and height. To indicate a certain location in space, we would provide three different coordinates on three different axes (x, y, and z ).
The understanding of different dimensions is crucial in understanding much of mathematics. The ability to visualize and a flexibility in adjusting to n dimensional worlds is a skill worth pursuing.
Portraying Three Dimensions
Even though most everyday experience is in three dimensions, most high school mathematics takes place in a twodimensional world in which there is only length and width. Part of this is because traditional learning is largely communicated through books or on a chalkboard. Book pages or the planes of chalkboards have primarily two dimensions. Even if there is a picture in a book of a threedimensional object, the object is "flattened" so that its likeness can be communicated through a twodimensional medium. This can cause differences between what we see in a threedimensional object and how the object is portrayed in two dimensions.
For example, consider a cube. In real life, a vertex of a cube is formed when three 90° angles from three different square faces intersect at a point. However, in a twodimensional representation of a cube, the right angles may measure other than 90° on the page. For example, in the picture of the cube below, each angle around the center vertex measures close to 120°. The image of the threedimensional object must be altered this way in order for it to give us the perception that it is really threedimensional.
Portraying three dimensions in twodimensional representations can also play tricks with our sense of perception. Many optical illusions are created by taking an impossible figure in three dimensions and drawing a twodimensional picture of it.
Artist M. C. Escher was a master of communicating impossible ideas through twodimensional drawings. In many of his engravings, the scene is impossible to construct in three dimensions, but by working with angles and making a few simple alterations, Escher fools our normally reliable sense of perception.
Imagining Dimensions
Points, lines, and planes are theoretical concepts typically modeled with threedimensional objects in which we learn to ignore some of their dimensions. For example, earlier it was stated that a piece of paper or a plane is primarily twodimensional. Although a piece of paper clearly has a thickness (height), albeit small, we think of it as being twodimensional. So when considering objects with different dimensions, we must be able to visualize and think abstractly.
When we think of a plane, we start with a sheet of paper, which has length, width, and a very small height. Then we imagine that the height slowly disappears until all that remains is a length and a width. Similarly, when we draw lines on a chalkboard, we know that the chalkdust has length, a small width, and even an infinitesimal thickness. However, a mathematician imagines the line as having only one dimension: length. Finally when we consider a point in space, we must imagine that the point is merely a position or a location in space: that is, it has no size. To imagine a point, begin with an image of a fixed atom in space that is slowly melting or disappearing until all that remains is its location. That location is a true mathematical image of a point.
A college professor gave the following way to think about dimensions. Start with a figure of zero dimensions: that is, a point. Set two of these items next to each other and connect them with a line segment. You now have a new entity of one dimension called a line segment. Again set two of these line segments next to each other and connect them with line segments. You now have a twodimensional entity called a square. Connect two squares, and you have a threedimensional entity called a cube. Connect the vertices of two cubes and you have a fourdimensional entity sometimes known as a hypercube or tesseract .*
*A tesseract has 16 vertices, 32 edges, 24 squares, and 8 cubes.
If you are having trouble visualizing a tesseract (as shown above), keep in mind that you are looking at a twodimensional picture of something that is fourdimensional! Even if you build a threedimensional physical model of a tesseract, you will still need to imagine the missing dimension that would bring us from three dimensions into four.
Abbott's Flatland
Imagining worlds of different dimensions is the premise of Edwin A. Abbott's book, Flatland. He describes an entire civilization that lives in a world with only two dimensions. All of its inhabitants are either lines, or polygons such as triangles, squares, and pentagons. These individuals cannot perceive of anything but length and width. Imagine, for example, living in a blackboard and only being able to move from side to side or up and down. Depth would be an unknown quantity.
Abbott's book describes a day when a sphere visits a family in Flatland. Because Flatlanders are unable to perceive a third dimension of depth, they are only able to perceive first a point (as the sphere first entered their world), then a small circle which increases in area until it reaches the very middle of the sphere, and then a circle of decreasing area until it becomes a point again. Then it disappears. Imagine trying to communicate to these Flatlanders anything about the third dimension when they had never experienced anything in that realm.
Use a similar analogy when thinking about what four dimensions might be like. Even if a creature from the fourth dimension visited us here in threedimensional "Spaceland," and tried to describe the fourth dimension to us, we would not be equipped to understand it fully.
see also Coordinates, ThreeDimensional; Escher, M. C.; Mathematics, Impossible.
Jane Keiser Krumpe
Bibliography
Abbott, Edwin A. Flatland. New York: Penguin Books USA, Inc., 1984.
Berger, Dionys. Sphereland. New York: Crowell, 1965.
Escher, M. C. M. C. Escher, 29 Master Prints. New York: Harry N. Abrams, Inc., Publishers, 1983.
Rucker, Rudolf v. B. Geometry, Relativity and the Fourth Dimension. New York: Dover Publications, Inc., 1977.
Cite this article
Pick a style below, and copy the text for your bibliography.

MLA

Chicago

APA
"Dimensions." Mathematics. . Encyclopedia.com. 22 Sep. 2018 <http://www.encyclopedia.com>.
"Dimensions." Mathematics. . Encyclopedia.com. (September 22, 2018). http://www.encyclopedia.com/education/newswireswhitepapersandbooks/dimensions
"Dimensions." Mathematics. . Retrieved September 22, 2018 from Encyclopedia.com: http://www.encyclopedia.com/education/newswireswhitepapersandbooks/dimensions
Citation styles
Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).
Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.
Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the mostrecent information available at these sites:
Modern Language Association
The Chicago Manual of Style
http://www.chicagomanualofstyle.org/tools_citationguide.html
American Psychological Association
Notes:
 Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
 In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.
dimensions
dimensions In mathematics, numbers specifying the extent of an object in different directions. A figure with length only, is onedimensional; a figure having area but not volume, twodimensional; and a figure having volume, threedimensional.
Cite this article
Pick a style below, and copy the text for your bibliography.

MLA

Chicago

APA
"dimensions." World Encyclopedia. . Encyclopedia.com. 22 Sep. 2018 <http://www.encyclopedia.com>.
"dimensions." World Encyclopedia. . Encyclopedia.com. (September 22, 2018). http://www.encyclopedia.com/environment/encyclopediasalmanacstranscriptsandmaps/dimensions
"dimensions." World Encyclopedia. . Retrieved September 22, 2018 from Encyclopedia.com: http://www.encyclopedia.com/environment/encyclopediasalmanacstranscriptsandmaps/dimensions
Citation styles
Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).
Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.
Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the mostrecent information available at these sites:
Modern Language Association
The Chicago Manual of Style
http://www.chicagomanualofstyle.org/tools_citationguide.html
American Psychological Association
Notes:
 Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
 In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.