Skip to main content
Select Source:

Electromyography

Electromyography

Definition

Electromyography (EMG) is an electrical recording of muscle activity that aids in the diagnosis of neuromuscular disease, which affects muscle and peripheral nerves.

Purpose

Muscles are stimulated by signals from nerve cells called motor neurons. This stimulation causes electrical activity in the muscle, which in turn causes contraction. A needle electrode inserted into the muscle and connected to a recording device detects this electrical activity. Together, the electrode and recorder are called an electromyography machine. EMG can determine whether a particular muscle is responding appropriately to stimulation, and whether a muscle remains inactive when not stimulated.

EMG is performed most often to help diagnose different diseases causing weakness. Although EMG is a test of the motor system, it may help identify abnormalities of nerves or spinal nerve roots that may be associated with pain or numbness. Other symptoms for which EMG may be useful include atrophy, stiffness, fasciculation (muscle twitching), cramp, deformity, and spasticity . EMG results can help determine whether symptoms are due to a muscle disease or a neurological disorder, and, when combined with clinical findings, usually allow a confident diagnosis.

EMG can help diagnose many muscle and nerve disorders, including:

  • muscular dystrophy
  • congenital myopathies
  • mitochondrial myopathies
  • metabolic myopathies
  • myotonias
  • peripheral neuropathies
  • radiculopathies
  • nerve lesions
  • amyotrophic lateral sclerosis
  • polio
  • spinal muscular atrophy
  • Guillain-Barré syndrome ataxias
  • myasthenias
  • inflammatory myopathies

Precautions

No special precautions are needed for this test. Persons with a history of bleeding disorder should consult with their treating physician before the test. If a muscle biopsy is planned as part of the diagnostic workup, EMG should not be performed at the same site, as it may affect the microscopic appearance of the muscle. Also, persons on blood thinners should relay this information to the physician performing the EMG.

Description

During an EMG test, a fine needle is inserted into the muscle to be tested. This may cause some discomfort, similar to that of an injection. Recordings are made while the muscle is at rest, and then during the contraction. The person performing the test may move the limb being tested, and direct the patient to move it with various levels of force. The needle may be repositioned in the same muscle for further recording. Other muscles may be tested as well. A typical session lasts from 3060 minutes, with individual muscles usually studied for a period of two to five minutes.

A slightly different test, the "nerve conduction velocity test," is often performed at the same time with the same equipment. In this test, stimulating and recording electrodes are used and small electrical shocks are applied to measure the ability of the nerve to conduct electrical signals. This test may cause mild tingling and discomfort similar to a mild shock from static electricity. Evoked potentials may also be performed for additional diagnostic information. Nerve conduction velocity and evoked potential testing are especially helpful when pain or sensory complaints are more problematic than weakness.

Preparation

No special preparation is needed. The doctor supervising and interpreting the test should be given information about the symptoms, medical conditions, suspected diagnosis, neuroimaging studies, and other test results.

Aftercare

Minor pain and bleeding may continue for several hours after the test. The muscle may be tender for a day or two.

Risks

There are no significant risks to this test, other than those associated with any needle insertion (pain, bleeding, bruising, or infection).

Normal results

There should be some brief EMG activity during needle insertion. This activity may be increased in diseases of the nerve and decreased in long-standing muscle disorders in which muscle tissue is replaced by fibrous tissue or fat. Muscle tissue normally shows no EMG activity when at rest or when moved passively by the examiner. When the patient actively contracts the muscle, spikes (motor unit action potentials) should appear on the recording screen, reflecting the electrical activity within. As the muscle is contracted more forcefully, more groups of muscle fibers are recruited or activated, causing more EMG activity.

The interpretation of EMG results is not a simple matter, requiring analysis of the onset, duration, amplitude, and other characteristics of the spike patterns.

Electrical activity at rest is abnormal; the particular pattern of firing may indicate denervation (for example, a nerve lesion, radiculopathy , or lower motor neuron degeneration), myotonia, or inflammatory myopathy .

Decreases in the amplitude and duration of spikes are associated with muscle diseases, which also show faster recruitment of other muscle fibers to compensate for weakness. Increases in the amplitude and duration of the spikes are typical of nerve diseases in which some degree of rein-nervation (repair by new nerve connections to muscle) has occurred. Recruitment is reduced in nerve disorders.

Resources

BOOKS

Basmajian, J., and C. DeLuca. Muscles Alive: Their Function Revealed by Electromyography, 5th ed. Baltimore: Williams & Wilkins, 1985.

Richard Robinson

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Electromyography." Gale Encyclopedia of Neurological Disorders. . Encyclopedia.com. 15 Jul. 2018 <http://www.encyclopedia.com>.

"Electromyography." Gale Encyclopedia of Neurological Disorders. . Encyclopedia.com. (July 15, 2018). http://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/electromyography

"Electromyography." Gale Encyclopedia of Neurological Disorders. . Retrieved July 15, 2018 from Encyclopedia.com: http://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/electromyography

Learn more about citation styles

Citation styles

Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

http://www.mla.org/style

The Chicago Manual of Style

http://www.chicagomanualofstyle.org/tools_citationguide.html

American Psychological Association

http://apastyle.apa.org/

Notes:
  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.

Electromyography

Electromyography

Definition

Electromyography (EMG) is an electrical recording of muscle activity that aids in the diagnosis of neuromuscular disease.

Purpose

Muscles are stimulated by signals from nerve cells called motor neurons. This stimulation causes electrical activity in the muscle, which in turn causes contraction. This electrical activity is detected by a needle electrode inserted into the muscle and connected to a recording device. Together, the electrode and recorder are called an electromyography machine. EMG can determine whether a particular muscle is responding appropriately to stimulation, and whether a muscle remains inactive when not stimulated.

EMG is performed most often to help diagnose different diseases causing weakness. Although EMG is a test of the motor system, it may help identify abnormalities of nerves or spinal nerve roots that may be associated with pain or numbness. Other symptoms for which EMG may be useful include numbness, atrophy, stiffness, fasciculation, cramp, deformity, and spasticity. EMG results can help determine whether symptoms are due to a muscle disease or a neurological disorder, and, when combined with clinical findings, usually allow a confident diagnosis.

EMG can help diagnose many muscle and nerve disorders, including:

  • muscular dystrophy
  • congenital myopathies
  • mitochondrial myopathies
  • metabolic myopathies
  • myotonias
  • peripheral neuropathies
  • radiculopathies
  • nerve lesions
  • amyotrophic lateral sclerosis
  • polio
  • spinal muscular atrophy
  • Guillain-Barré syndrome
  • ataxias
  • myasthenias

Precautions

No special precautions are needed for this test. Patients with a history of bleeding disorder should consult with their treating physician before the test. If a muscle biopsy is planned as part of the diagnostic work-up, EMG should not be performed at the same site, as it may effect the microscopic appearance of the muscle.

Description

During an EMG test, a fine needle is inserted into the muscle to be tested. This may cause some discomfort, similar to that of an injection. Recordings are made while the muscle is at rest, and then during the contraction. The person performing the test may move the limb being tested, and direct the patient to move it with various levels of force. The needle may be repositioned in the same muscle for further recording. Other muscles may be tested as well. A typical session lasts from 30-60 minutes.

A slightly different test, the nerve conduction velocity test, is often performed at the same time with the same equipment. In this test, stimulating and recording electrodes are used, and small electrical shocks are applied to measure the ability of the nerve to conduct electrical signals. This test may cause mild tingling and discomfort similar to a mild shock from static electricity. Evoked potentials may also be performed for additional diagnostic information. Nerve conduction velocity and evoked potential testing are especially helpful when pain or sensory complaints are more prominent than weakness.

Preparation

No special preparation is needed. The doctor supervising and interpreting the test should be given information about the symptoms, medical conditions, suspected diagnosis, neuroimaging studies, and other test results.

Aftercare

Minor pain and bleeding may continue for several hours after the test. The muscle may be tender for a day or two.

Risks

There are no significant risks to this test, other than those associated with any needle insertion (pain, bleeding, bruising, or infection).

Normal results

There should be some brief EMG activity during needle insertion. This activity may be increased in diseases of the nerve and decreased in long-standing muscle disorders where muscle tissue is replaced by fibrous tissue or fat. Muscle tissue normally shows no EMG activity when at rest or when moved passively by the examiner. When the patient actively contracts the muscle, spikes (motor unit action potentials) should appear on the recording screen, reflecting the electrical activity within. As the muscle is contracted more forcefully, more groups of muscle fibers are recruited or activated, causing more EMG activity.

Abnormal results

The interpretation of EMG results is not a simple matter, requiring analysis of the onset, duration, amplitude, and other characteristics of the spike patterns.

Electrical activity at rest is abnormal; the particular pattern of firing may indicate denervation (for example, a nerve lesion, radiculopathy, or lower motor neuron degeneration), myotonia, or inflammatory myopathy.

Decreases in the amplitude and duration of spikes are associated with muscle diseases, which also show faster recruitment of other muscle fibers to compensate for weakness. Recruitment is reduced in nerve disorders.

Resources

OTHER

Falck, B., E. Stalberg, and L. Korpinen. The Expert Electromyographer. http://www.tut.fi/korpinen/EMG.htm.

KEY TERMS

Motor neurons Nerve cells that transmit signals from the brain or spinal cord to the muscles.

Motor unit action potentials Spikes of electrical activity recorded during an EMG that reflect the number of motor units (motor neurons and the muscle fibers they transmit signals to) activated when the patient voluntarily contracts a muscle.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Electromyography." Gale Encyclopedia of Medicine, 3rd ed.. . Encyclopedia.com. 15 Jul. 2018 <http://www.encyclopedia.com>.

"Electromyography." Gale Encyclopedia of Medicine, 3rd ed.. . Encyclopedia.com. (July 15, 2018). http://www.encyclopedia.com/medicine/encyclopedias-almanacs-transcripts-and-maps/electromyography

"Electromyography." Gale Encyclopedia of Medicine, 3rd ed.. . Retrieved July 15, 2018 from Encyclopedia.com: http://www.encyclopedia.com/medicine/encyclopedias-almanacs-transcripts-and-maps/electromyography

Learn more about citation styles

Citation styles

Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

http://www.mla.org/style

The Chicago Manual of Style

http://www.chicagomanualofstyle.org/tools_citationguide.html

American Psychological Association

http://apastyle.apa.org/

Notes:
  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.

electromyogram

electromyogram (EMG) A recording of the electrical activity of muscle fibres. It is obtained by means of electrodes inserted into the muscle, where they detect the action potentials of individual muscle units. The electrical signals are amplified by an apparatus (electromyograph) and displayed on an oscilloscope. Electromyograms are used in experimental muscle physiology and in diagnosing various nerve and muscle disorders.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"electromyogram." A Dictionary of Biology. . Encyclopedia.com. 15 Jul. 2018 <http://www.encyclopedia.com>.

"electromyogram." A Dictionary of Biology. . Encyclopedia.com. (July 15, 2018). http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/electromyogram

"electromyogram." A Dictionary of Biology. . Retrieved July 15, 2018 from Encyclopedia.com: http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/electromyogram

Learn more about citation styles

Citation styles

Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

http://www.mla.org/style

The Chicago Manual of Style

http://www.chicagomanualofstyle.org/tools_citationguide.html

American Psychological Association

http://apastyle.apa.org/

Notes:
  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.

electromyography

electromyography (EMG) (i-lek-troh-my-og-răfi) n. continuous recording of the electrical activity of a muscle by means of electrodes inserted into the muscle fibres. The tracing is displayed on an oscilloscope.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"electromyography." A Dictionary of Nursing. . Encyclopedia.com. 15 Jul. 2018 <http://www.encyclopedia.com>.

"electromyography." A Dictionary of Nursing. . Encyclopedia.com. (July 15, 2018). http://www.encyclopedia.com/caregiving/dictionaries-thesauruses-pictures-and-press-releases/electromyography

"electromyography." A Dictionary of Nursing. . Retrieved July 15, 2018 from Encyclopedia.com: http://www.encyclopedia.com/caregiving/dictionaries-thesauruses-pictures-and-press-releases/electromyography

Learn more about citation styles

Citation styles

Encyclopedia.com gives you the ability to cite reference entries and articles according to common styles from the Modern Language Association (MLA), The Chicago Manual of Style, and the American Psychological Association (APA).

Within the “Cite this article” tool, pick a style to see how all available information looks when formatted according to that style. Then, copy and paste the text into your bibliography or works cited list.

Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia.com cannot guarantee each citation it generates. Therefore, it’s best to use Encyclopedia.com citations as a starting point before checking the style against your school or publication’s requirements and the most-recent information available at these sites:

Modern Language Association

http://www.mla.org/style

The Chicago Manual of Style

http://www.chicagomanualofstyle.org/tools_citationguide.html

American Psychological Association

http://apastyle.apa.org/

Notes:
  • Most online reference entries and articles do not have page numbers. Therefore, that information is unavailable for most Encyclopedia.com content. However, the date of retrieval is often important. Refer to each style’s convention regarding the best way to format page numbers and retrieval dates.
  • In addition to the MLA, Chicago, and APA styles, your school, university, publication, or institution may have its own requirements for citations. Therefore, be sure to refer to those guidelines when editing your bibliography or works cited list.