Skip to main content




Most people are familiar with magnets primarily as toys, or as simple objects for keeping papers attached to a metal surface such as a refrigerator door. In fact the areas of application for magnetism are much broader, and range from security to health care to communication, transportation, and numerous other aspects of daily life. Closely related to electricity, magnetism results from specific forms of alignment on the part of electron charges in certain varieties of metal and alloy.


Magnetism, along with electricity, belongs to a larger phenomenon, electromagnetism, or the force generated by the passage of an electric current through matter. When two electric charges are at rest, it appears to the observer that the force between them is merely electric. If the charges are in motion, howeverand in this instance motion or rest is understood in relation to the observerthen it appears as though a different sort of force, known as magnetism, exists between them.

In fact, the difference between magnetism and electricity is purely artificial. Both are manifestations of a single fundamental force, with "magnetism" simply being an abstraction that people use for the changes in electromagnetic force created by the motion of electric charges. It is a distinction on the order of that between water and wetness; nonetheless, it is often useful and convenient to discuss the two phenomena as though they were separate.

At the atomic level, magnetism is the result of motion by electrons, negatively charged subatomic particles, relative to one another. Rather like planets in a solar system, electrons both revolve around the atom's nucleus and rotate on their own axes. (In fact the exact nature of their movement is much more complex, but this analogy is accurate enough for the present purposes.) Both types of movement create a magnetic force field between electrons, and as a result the electron takes on the properties of a tiny bar magnet with a north pole and south pole. Surrounding this infinitesimal magnet are lines of magnetic force, which begin at the north pole and curve outward, describing an ellipse as they return to the south pole.

In most atomic elements, the structure of the atom is such that the electrons align in a random manner, rather like a bunch of basketballs bumping into one another as they float in a swimming pool. Because of this random alignment, the small magnetic fields cancel out one another. Two such self-canceling particles are referred to as paired electrons, and again, the analogy to bar magnets is an appropriate one: if one were to shake a bag containing an even number of bar magnets, they would all wind up in pairs, joined at opposing (north-south) poles.

There are, however, a very few elements in which the fields line up to create what is known as a net magnetic dipole, or a unity of directionrather like a bunch of basketballs simultaneously thrown from in the same direction at the same time. These elements, among them iron, cobalt, and nickel, as well as various alloys or mixtures, are commonly known as magnetic metals or natural magnets.

It should be noted that in magnetic metals, magnetism comes purely from the alignment of forces exerted by electrons as they spin on their axes, whereas the forces created by their orbital motion around the nucleus tend to cancel one another out. But in magnetic rare earth elements such as cerium, magnetism comes both from rotational and orbital forms of motion. Of principal concern in this discussion, however, is the behavior of natural magnets on the one hand, and of nonmagnetic materials on the other.

There are five different types of magnetismdiamagnetism, paramagnetism, ferromagnetism, ferrimagnetism, and antiferromagnetism. Actually, these terms describe five different types of response to the process of magnetization, which occurs when an object is placed in a magnetic field.

A magnetic field is an area in which a magnetic force acts on a moving charged particle such that the particle would experience no force if it moved in the direction of the magnetic fieldin other words, it would be "drawn," as a ten-penny nail is drawn to a common bar or horseshoe (U-shaped) magnet. An electric current is an example of a moving charge, and indeed one of the best ways to create a magnetic field is with a current. Often this is done by means of a solenoid, a current-carrying wire coil through which the material to be magnetized is passed, much as one would pass an object through the interior of a spring.

All materials respond to a magnetic field; they just respond in different ways. Some non-magnetic substances, when placed within a magnetic field, slightly reduce the strength of that field, a phenomenon known as diamagnetism. On the other hand, there are nonmagnetic substances possessing an uneven number of electrons per atom, and in these instances a slight increase in magnetism, known as paramagnetism, occurs. Paramagnetism always has to overcome diamagnetism, however, and hence the gain in magnetic force is very small. In addition, the thermal motion of atoms and molecules prevents the objects' magnetic fields from coming into alignment with the external field. Lower temperatures, on the other hand, enhance the process of paramagnetism.

In contrast to diamagnetism and paramagnetism, ferro-, ferri-, and antiferromagnetism all describe the behavior of natural magnets when exposed to a magnetic field. The name ferromagnetism suggests a connection with iron, but in fact the term can apply to any of those materials in which the magnitude of the object's magnetic field increases greatly when it is placed within an external field. When a natural magnet becomes magnetized (that is, when a metal or alloy comes into contact with an external magnetic field), a change occurs at the level of the domain, a group of atoms equal in size to about 5 × 105 meters acrossjust large enough to be visible under a microscope.

In an unmagnetized sample, there may be an alignment of unpaired electron spins within a domain, but the direction of the various domains' magnetic forces in relation to one another is random. Once a natural magnet is placed within an external magnetic force field, however, one of two things happens to the domains. Either they all come into alignment with the field or, in certain types of material, those domains in alignment with the field grow while the others shrink to nonexistence.

The first of these processes is called domain alignment or ferromagnetism, the second domain growth or ferrimagnetism. Both processes turn a natural magnet into what is known as a permanent magnetor, in common parlance, simply a "magnet." The latter is then capable of temporarily magnetizing a ferromagnetic item, as for instance when one rubs a paper clip against a permanent magnet and then uses the magnetized clip to lift other paper clips. Of the two varieties, however, a ferromagnetic metal is stronger because it requires a more powerful magnetic force field in order to become magnetized. Most powerful of all is a saturated ferromagnetic metal, one in which all the unpaired electron spins are aligned.

Once magnetized, it is very hard for a ferro-magnetic metal to experience demagnetization, or antiferromagnetism. Again, there is a connection between temperature and magnetism, with heat acting as a force to reduce the strength of a magnetic field. Thus at temperatures above 1,418°F (770°C), the atoms within a domain take on enough kinetic energy to overpower the forces holding the electron spins in alignment. In addition, mechanical disturbancesfor instance, battering a permanent magnet with a hammercan result in some reduction of magnetic force.

Many of the best permanent magnets are made of steel, which, because it is an alloy of iron with carbon and other elements, has an irregular structure that lends itself well to the ferromagnetic process of domain alignment. Iron, by contrast, will typically lose its magnetization when an external magnetic force field is removed; but this actually makes it a better material for some varieties of electromagnet.

The latter, in its simplest form, consists of an iron rod inside a solenoid. When a current is passing through the solenoid, it creates a magnetic force field, activating the iron rod and turning it into an electromagnet. But as soon as the current is turned off, the rod loses its magnetic force. Not only can an electromagnet thus be controlled, but it is often stronger than a permanent magnet: hence, for instance, giant electromagnets are used for lifting cars in junkyards.


Finding the Way: Magnets in Compasses

A north-south bar magnet exerts exactly the same sort of magnetic field as a solenoid. Lines of magnetic run through it in one direction, from "south" to "north," and upon leaving the north pole of the magnet, these lines describe an ellipse as they curve back around to the south pole. In view of this model, it is also easy to comprehend why a pair of opposing poles attracts one another, and a pair of like polesfor whom the lines of force are moving away from each otherrepels. This is a fact particularly applicable to the operation of MAGLEV trains, as discussed later.

A magnetic compass works because Earth itself is like a giant bar magnet, complete with vast arcs of magnetic force, called the geomagnetic field, surrounding the planet. The first scientist to recognize the magnetic properties of Earth was the English physicist William Gilbert (1544-1603). Scientists today believe that the source of Earth's magnetism lies in a core of molten iron some 4,320 mi (6,940 km) across, constituting half the planet's diameter. Within this core run powerful electric currents that ultimately create the geomagnetic field.

Just as a powerful magnet causes all the domains in a magnetic metal to align with it, a bar magnet placed in a magnetic field will rotate until it lines up with the field's direction. The same thing happens when one suspends a magnet from a string: it lines up with Earth's magnetic field, and points in a north-south direction. The Chinese of the first century b.c., though unaware of the electromagnetic forces that caused this to happen, discovered that a strip of magnetic metal always tended to point toward geographic north.

This led ultimately to the development of the magnetic compass, which typically consists of a magnetized iron needle suspended over a card marked with the four cardinal directions. The needle is attached to a pivoting mechanism at its center, which allows it to move freely so that the "north" end will always point the user northward.

The magnetic compass proved so important that it is typically ranked alongside paper, printing, and gunpowder as one of premodern China's four great gifts to the West. Prior to the compass, mariners had to depend purely on the position of the Sun and other, less reliable, means of determining direction; hence the invention quite literally helped open up the world. But there is a somewhat irksome anomaly lurking in the seeming simplicity of the magnetic compass.

In fact magnetic north is not the same thing as true north; or, to put it another way, if one continued to follow a compass northward, it would lead not to the Earth's North Pole, but to a point identified in 1984 as 77°N, 102°18 Wthat is, in the Queen Elizabeth Islands of far northern Canada. The reason for this is that Earth's magnetic field describes a current loop whose center is 11° off the planet's equator, and thus the north and south magnetic poleswhich are on a plane perpendicular to that of the Earth's magnetic fieldare 11° off of the planet's axis.

The magnetic field of Earth is changing position slowly, and every few years the United States Geological Survey updates magnetic declination, or the shift in the magnetic field. In addition, Earth's magnetic field is slowly weakening as well. The behavior, both in terms of weakening and movement, appears to be similar to changes taking place in the magnetic field of the Sun.

Magnets for Detection: Burglar Alarms, Magnetometers, and MRI

A compass is a simple magnetic instrument, and a burglar alarm is not much more complex. A magnetometer, on the other hand, is a much more sophisticated piece of machinery for detecting the strength of magnetic fields. Nonetheless, the magnetometer bears a relation to its simpler cousins: like a compass, certain kinds of magnetometers respond to a planet's magnetic field; and like a burglar alarm, other varieties of magnetometer are employed for security.

At heart, a burglar alarm consists of a contact switch, which responds to changes in the environment and sends a signal to a noisemaking device. The contact switch may be mechanicala simple fastener, for instanceor magnetic. In the latter case, a permanent magnet may be installed in the frame of a window or door, and a piece of magnetized material in the window or door itself. Once the alarm is activated, it will respond to any change in the magnetic fieldi.e., when someone slides open the door or window, thus breaking the connection between magnet and metal.

Though burglar alarms may vary in complexity, and indeed there may be much more advanced systems using microwaves or infrared rays, the application of magnetism in home security is a simple matter of responding to changes in a magnetic field. In this regard, the principle governing magnetometers used at security checkpoints is even simpler. Whether at an airport or at the entrance to some other high-security venue, whether handheld or stationary, a magnetometer merely detects the presence of magnetic metals. Since the vast majority of firearms, knife-blades, and other weapons are made of iron or steel, this provides a fairly efficient means of detection.

At a much larger scale, magnetometers used by astronomers detect the strength and sometimes the direction of magnetic fields surrounding Earth and other bodies in space. This variety of magnetometer dates back to 1832, when mathematician and scientist Carl Friedrich Gauss (1777-1855) developed a simple instrument consisting of a permanent bar magnet suspended horizontally by means of a gold wire. By measuring the period of the magnet's oscillation in Earth's magnetic field (or magnetosphere), Gauss was able to measure the strength of that field. Gauss's name, incidentally, would later be applied to the term for a unit of magnetic force. The gauss, however, has in recent years been largely replaced by the tesla, named after Nikola Tesla (1856-1943), which is equal to one newton/ampere meter (1 N/A·m) or 104 (10,000) gauss.

As for magnetometers used in astronomical research, perhaps the most prominentand certainly one of the most distantones is on Galileo, a craft launched by the U.S. National Aeronautics and Space Administration (NASA) toward Jupiter on October 15, 1989. Among other instruments on board Galileo, which has been in orbit around the solar system's largest planet since 1995, is a magnetometer for measuring Jupiter's magnetosphere and that of its surrounding asteroids and moons.

Closer to home, but no less impressive, is another application of magnetism for the purposes of detection: magnetic resonance imagining, or MRI. First developed in the early 1970s, MRI permits doctors to make intensive diagnoses without invading the patient's body either with a surgical knife or x rays.

The heart of the MRI machine is a large tube into which the patient is placed in a supine position. A technician then activates a powerful magnetic field, which causes atoms within the patient's body to spin at precise frequencies. The machine then beams radio signals at a frequency matching that of the atoms in the cells (e.g., cancer cells) being sought. Upon shutting off the radio signals and magnetic field, those atoms emit bursts of energy that they have absorbed from the radio waves. At that point a computer scans the body for frequencies matching specific types of atoms, and translates these into three-dimensional images for diagnosis.

Magnets for Projecting Sound: Microphones, Loudspeakers, Car Horns, and Electric Bells

The magnets used in Galileo or an MRI machine are, needless to say, very powerful ones, and as noted earlier, the best way to create a super-strong, controllable magnet is with an electrical current. When that current is properly coiled around a magnetic metal, this creates an electromagnet, which can be used in a variety of applications.

As discussed above, the most powerful electromagnets typically use nonpermanent magnets so as to facilitate an easy transition from an extremely strong magnetic field to a weak or nonexistent one. On the other hand, permanent magnets are also used in loudspeakers and similar electromagnetic devices, which seldom require enormous levels of power.

In discussing the operation of a loudspeaker, it is first necessary to gain a basic understanding of how a microphone works. The latter contains a capacitor, a system for storing charges in the form of an electrical field. The capacitor's negatively charged plate constitutes the microphone's diaphragm, which, when it is hit by sound waves, vibrates at the same frequency as those waves. Current flows back and forth between the diaphragm and the positive plate of the capacitor, depending on whether the electrostatic or electrical pull is increasing or decreasing. This in turn produces an alternating current, at the same frequency as the sound waves, which travels through a mixer and then an amplifier to the speaker.

A loudspeaker typically contains a circular permanent magnet, which surrounds an electrical coil and is in turn attached to a cone-shaped diaphragm. Current enters the speaker ultimately from the microphone, alternating at the same frequency as the source of the sound (a singer's voice, for instance). As it enters the coil, this current induces an alternating magnetic field, which causes the coil to vibrate. This in turn vibrates the cone-shaped diaphragm, and the latter reproduces sounds generated at the source.

A car horn also uses magnetism to create sound by means of vibration. When a person presses down on the horn embedded in his or her steering wheel, this in turn depresses an iron bar that passes through an electromagnet surrounded by wires from the car's battery. The bar moves up and down within the electromagnetic field, causing the diaphragm to vibrate and producing a sound that is magnified greatly when released through a bell-shaped horn.

Electromagnetically induced vibration is also the secret behind another noise-making device, a vibrating electric doorbell used in many apartments. The button that a visitor presses is connected directly to a power source, which sends current flowing through a spring surrounding an electromagnet. The latter generates a magnetic field, drawing toward it an iron armature attached to a hammer. The hammer then strikes the bell. The result is a mechanical reaction that pushes the armature away from the electromagnet, but the spring forces the armature back against the electromagnet again. This cycle of contact and release continues for as long as the button is depressed, causing a continual ringing of the bell.

Recording and Reading Data Using Magnets: From Records and Tapes to Disk Drives

Just as magnetism plays a critical role in projecting the volume of sound, it is also crucial to the recording and retrieval of sound and other data. Of course terms such as "retrieval" and "data" have an information-age sound to them, but the idea of using magnetism to record sound is an old onemuch older than computers or compact discs (CDs). The latter, of course, replaced cassettes in the late 1980s as the preferred mode for listening to recorded music, just as cassettes had recently made powerful gains against phonograph records.

Despite the fact that cassettes entered the market much later than records, however, recording engineers from the mid-twentieth century onward typically used magnetic tape for master recordings of songs. This master would then be used to create a metal master record disk by means of a cutting head that responded to vibrations from the master tape; then, the record company could produce endless plastic copies of the metal record.

In recording a tapewhether a stereo master or a mere home recording of a conversationthe principles at work are more or less the same. As noted in the earlier illustration involving a microphone and loudspeaker, sound comes through a microphone in the form of alternating current. The strength of this current in turn affects the "recording head," a small electromagnet whose magnetic field extends over the section of tape being recorded. Loud sounds produce strong magnetic fields, and soft ones weak fields.

All of this information becomes embedded on the cassette tape through a process of magnetic alignment not so different from the process described earlier for creating a permanent magnet. But whereas the permanent magnetization of a natural magnet is difficult to reverse, reversal of a tape's magnetizationin other words, erasing the tapeis easy. An erase head, an electromagnet operating at a frequency too high for the human ear to hear, simply scrambles the magnetic particles on a piece of tape.

A CD, as one might expect, is much more closely related to a computer disk-drive than it is to earlier forms of recording technology. The disk drive receives electronic on-off signals from the computer, and translates these into magnetic codes that it records on the surface of a floppy disk. The disk drive itself includes two electric motors: a disk motor, which rotates the disk at a high speed, and a head motor, which moves the computer's read-write head across the disk. (It should be noted that most electric motors, including the universal motors used in a variety of household appliances, also use electromagnets.)

A third motor, called a stepper motor, ensures that the drive turns at a precise rate of speed. The stepper motor contains its own magnet, in this case a permanent one of cylindrical shape that sends signals to rows of metal teeth surrounding it, and these teeth act as gears to regulate the drive's speed. Likewise a CD player, which actually uses laser beams rather than magnetic fields to retrieve data from a disc, also has a drive system that regulates the speed at which the disk spins.

MAGLEV Trains: The Future of Transport?

One promising application of electromagnetic technology relates to a form of transportation that might, at first glance, appear to be old news: trains. But MAGLEV, or magnetic levitation, trains are as far removed from the old steam engines of the Union Pacific as the space shuttle is from the Wright brothers' experimental airplane.

As discussed earlier, magnetic poles of like direction (i.e., north-north or south-south) repel one another such that, theoretically at least, it is possible to keep one magnet suspended in the air over another magnet. Actually it is impossible to produce these results with simple bar magnets, because their magnetic force is too small; but an electromagnet can create a magnetic field powerful enough that, if used properly, it exerts enough repulsive force to lift extremely heavy objects. Specifically, if one could activate train tracks with a strong electromagnetic field, it might be possible to "levitate" an entire train. This in turn would make possible a form of transport that could move large numbers of people in relative comfort, thus decreasing the environmental impact of automobiles, and do so at much higher speeds than a car could safely attain.

Actually the idea of MAGLEV trains goes back to a time when trains held complete supremacy over automobiles as a mode of transportation: specifically, 1907, when rocket pioneer Robert Goddard (1882-1945) wrote a story describing a vehicle that traveled by means of magnetic levitation. Just five years later, French engineer Emile Bachelet produced a working model for a MAGLEV train. But the amount of magnetic force required to lift such a vehicle made it impractical, and the idea fell to the wayside.

Then, in the 1960s, the advent of superconductivitythe use of extremely low temperatures, which facilitate the transfer of electrical current through a conducting material with virtually no resistancemade possible electromagnets of staggering force. Researchers began building MAGLEV prototypes using superconducting coils with strong currents to create a powerful magnetic field. The field in turn created a repulsive force capable of lifting a train several inches above a railroad track. Electrical current sent through guideway coils on the track allowed for enormous propulsive force, pushing trains forward at speeds up to and beyond 250 MPH (402 km/h).

Initially, researchers in the United States were optimistic about MAGLEV trains, but safety concerns led to the shelving of the idea for several decades. Meanwhile, other industrialized nations moved forward with MAGLEVs: in Japan, engineers built a 27-mi (43.5-km) experimental MAGLEV line, while German designers experimented with attractive (as opposed to repulsive) force in their Transrapid 07. MAGLEV trains gained a new defender in the United States with now-retired Senator Daniel Patrick Moynihan (D-NY), who as chairman of a Senate subcommittee overseeing the interstate highway system introduced legislation to fund MAGLEV research. The 1998 transportation bill allocated $950 million toward the Magnetic Levitation Prototype Development Program. As part of this program, in January 2001 the U.S. Department of Transportation selected projects in Maryland and Pennsylvania as the two finalists in the competition to build the first MAGLEV train service in the United States. The goal is to have the service in place by approximately 2010.


Barr, George. Science Projects for Young People. New York: Dover, 1964.

Beiser, Arthur. Physics, 5th ed. Reading, MA: Addison-Wesley, 1991.

Hann, Judith. How Science Works. Pleasantville, NY: Reader's Digest, 1991.

Macaulay, David. The New Way Things Work. Boston: Houghton Mifflin, 1998.

Molecular Expressions: Electricity and Magnetism: Interactive Java Tutorials (Web site). <> (January 26, 2001).

Topical Group on Magnetism (Web site). <> (January 26, 2001).

VanCleave, Janice. Magnets. New York: John Wiley &Sons, 1993.

Wood, Robert W. Physics for Kids: 49 Easy Experiments with Electricity and Magnetism. New York: Tab, 1990.



A type of magnet in which an object is charged by an electrical current. Typically the object used is made of iron, which quickly loses magnetic force when current is reduced. Thus an electromagnet can be turned on or off, and its magnetic force altered, making it potentially much more powerful than a natural magnet.


The unified electrical and magnetic force field generated by the passage of an electric current through matter.


Negatively charged subatomic particles whose motion relative to one another creates magnetic force.


Wherever a magnetic force acts on a moving charged particle, a magnetic field is said to exist. Magnetic fields are typically measured by a unitcalled a tesla.


A chemical element in which the magnetic fields created by electrons' relative motion align uniformly to create a net magnetic dipole, or unity of direction. Such elements, among them iron, cobalt, and nickel, are also known as magnetic metals.


A magnetic material in which groups of atoms, known as domains, are brought into alignment, and in which magnetization cannot be changed merely by attempting to realign the domains. Permanent magnetization is reversible only at very high temperaturesfor example, 1,418°F (770°C) in the case of iron.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Magnetism." Science of Everyday Things. . 23 Apr. 2017 <>.

"Magnetism." Science of Everyday Things. . (April 23, 2017).

"Magnetism." Science of Everyday Things. . Retrieved April 23, 2017 from


magnetism,force of attraction or repulsion between various substances, especially those made of iron and certain other metals; ultimately it is due to the motion of electric charges.

Magnetic Poles, Forces, and Fields

Any object that exhibits magnetic properties is called a magnet. Every magnet has two points, or poles, where most of its strength is concentrated; these are designated as a north-seeking pole, or north pole, and a south-seeking pole, or south pole, because a suspended magnet tends to orient itself along a north-south line. Since a magnet has two poles, it is sometimes called a magnetic dipole, being analogous to an electric dipole, composed of two opposite charges. The like poles of different magnets repel each other, and the unlike poles attract each other.

One remarkable property of magnets is that whenever a magnet is broken, a north pole will appear at one of the broken faces and a south pole at the other, such that each piece has its own north and south poles. It is impossible to isolate a single magnetic pole, regardless of how many times a magnet is broken or how small the fragments become. (The theoretical question as to the possible existence in any state of a single magnetic pole, called a monopole, is still considered open by physicists; experiments to date have failed to detect one.)

From his study of magnetism, C. A. Coulomb in the 18th cent. found that the magnetic forces between two poles followed an inverse-square law of the same form as that describing the forces between electric charges. The law states that the force of attraction or repulsion between two magnetic poles is directly proportional to the product of the strengths of the poles and inversely proportional to the square of the distance between them.

As with electric charges, the effect of this magnetic force acting at a distance is expressed in terms of a field of force. A magnetic pole sets up a field in the space around it that exerts a force on magnetic materials. The field can be visualized in terms of lines of induction (similar to the lines of force of an electric field). These imaginary lines indicate the direction of the field in a given region. By convention they originate at the north pole of a magnet and form loops that end at the south pole either of the same magnet or of some other nearby magnet (see also flux, magnetic). The lines are spaced so that the number per unit area is proportional to the field strength in a given area. Thus, the lines converge near the poles, where the field is strong, and spread out as their distance from the poles increases.

A picture of these lines of induction can be made by sprinkling iron filings on a piece of paper placed over a magnet. The individual pieces of iron become magnetized by entering a magnetic field, i.e., they act like tiny magnets, lining themselves up along the lines of induction. By using variously shaped magnets and various combinations of more than one magnet, representations of the field in these different situations can be obtained.

Magnetic Materials

The term magnetism is derived from Magnesia, the name of a region in Asia Minor where lodestone, a naturally magnetic iron ore, was found in ancient times. Iron is not the only material that is easily magnetized when placed in a magnetic field; others include nickel and cobalt. Carbon steel was long the material commonly used for permanent magnets, but more recently other materials have been developed that are much more efficient as permanent magnets, including certain ferroceramics and Alnico, an alloy containing iron, aluminum, nickel, cobalt, and copper.

Materials that respond strongly to a magnetic field are called ferromagnetic [Lat. ferrum = iron]. The ability of a material to be magnetized or to strengthen the magnetic field in its vicinity is expressed by its magnetic permeability. Ferromagnetic materials have permeabilities of as much as 1,000 or more times that of free space (a vacuum). A number of materials are very weakly attracted by a magnetic field, having permeabilities slightly greater than that of free space; these materials are called paramagnetic. A few materials, such as bismuth and antimony, are repelled by a magnetic field, having permeabilities less than that of free space; these materials are called diamagnetic.

The Basis of Magnetism

The electrical basis for the magnetic properties of matter has been verified down to the atomic level. Because the electron has both an electric charge and a spin, it can be called a charge in motion. This charge in motion gives rise to a tiny magnetic field. In the case of many atoms, all the electrons are paired within energy levels, according to the exclusion principle, so that the electrons in each pair have opposite (antiparallel) spins and their magnetic fields cancel. In some atoms, however, there are more electrons with spins in one direction than in the other, resulting in a net magnetic field for the atom as a whole; this situation exists in a paramagnetic substance. If such a material is placed in an external field, e.g., the field created by an electromagnet, the individual atoms will tend to align their fields with the external one. The alignment will not be complete, due to the disruptive effect of thermal vibrations. Because of this, a paramagnetic substance is only weakly attracted by a magnet.

In a ferromagnetic substance, there are also more electrons with spins in one direction than in the other. The individual magnetic fields of the atoms in a given region tend to line up in the same direction, so that they reinforce one another. Such a region is called a domain. In an unmagnetized sample, the domains are of different sizes and have different orientations. When an external magnetic field is applied, domains whose orientations are in the same general direction as the external field will grow at the expense of domains with other orientations. When the domains in all other directions have vanished, the remaining domains are rotated so that their direction is exactly the same as that of the external field. After this rotation is complete, no further magnetization can take place, no matter how strong the external field; a saturation point is said to have been reached. If the external field is then reduced to zero, it is found that the sample still retains some of its magnetism; this is known as hysteresis.

Evolution of Electromagnetic Theory

The connections between magnetism and electricity were discovered in the early part of the 19th cent. In 1820 H. C. Oersted found that a wire carrying an electrical current deflects the needle of a magnetic compass because a magnetic field is created by the moving electric charges constituting the current. It was found that the lines of induction of the magnetic field surrounding the wire (or any other conductor) are circular. If the wire is bent into a coil, called a solenoid, the magnetic fields of the individual loops combine to produce a strong field through the core of the coil. This field can be increased manyfold by inserting a piece of soft iron or other ferromagnetic material into the core; the resulting arrangement constitutes an electromagnet.

Following Oersted's discovery the various magnetic effects of an electric current were extensively investigated by J. B. Biot, Félix Savart, and A. M. Ampère. Ampère showed in 1825 that not only does a current-carrying conductor exert a force on a magnet but magnets also exert forces on current-carrying conductors. In 1831 Michael Faraday and Joseph Henry independently discovered that it is possible to produce a current in a conductor by changing the magnetic field about it. The discovery of this effect, called electromagnetic induction, together with the discovery that an electric current produces a magnetic field, laid the foundation for the modern age of electricity. Both the electric generator, which makes electricity widely available, and the electric motor, which converts electricity to useful mechanical work, are based on these effects.

Another relationship between electricity and magnetism is that a regularly changing electric current in a conductor will create a changing magnetic field in the space about the conductor, which in turn gives rise to a changing electrical field. In this way regularly oscillating electric and magnetic fields can generate each other. These fields can be visualized as a single wave that is propagating through space. The formal theory underlying this electromagnetic radiation was developed by James Clerk Maxwell in the middle of the 19th cent. Maxwell showed that the speed of propagation of electromagnetic radiation is identical with that of light, thus revealing that light is intimately connected with electricity and magnetism.


See D. Wagner, Introduction to the Theory of Magnetism (1972); D. J. Griffiths, Introduction to Electrodynamics (1981); R. T. Merritt, Our Magnetic Earth (2010).

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"magnetism." The Columbia Encyclopedia, 6th ed.. . 23 Apr. 2017 <>.

"magnetism." The Columbia Encyclopedia, 6th ed.. . (April 23, 2017).

"magnetism." The Columbia Encyclopedia, 6th ed.. . Retrieved April 23, 2017 from



Magnetism is a fundamental force of nature manifested by the attraction of certain materials for iron. Materials so attracted are said to be magnetic materials.

Humans have known about magnetism since at least 600 b.c. The force was almost certainly first observed in the attraction between the mineral known as lodestone, a form of magnetite, and pieces of iron. Englishman William Gilbert (15401603) was the first person to investigate the phenomenon of magnetism systematically using scientific methods. He also discovered that Earth is itself a weak magnet. Early theoretical investigations into the nature of Earth's magnetism were carried out by German physicist Carl Friedrich Gauss (17771855).

Some of the earliest quantitative studies of magnetic phenomena were initiated in the eighteenth century by French physicist Charles Coulomb (17361806). Coulomb found that the force between two magnetized objects is an inverse square law. That is, the force increases according to the magnetic strength of the two objects and decreases according to the square of the distance between them.

Danish physicist Hans Christian Oersted (17771851) first suggested a link between electricity and magnetism. Oersted found that an electric current always produces a magnetic field around itself. (A magnetic field is an area where a magnetic force is present.) Shortly thereafter, French physicist André-Marie Ampère (17751836) and English chemist and physicist Michael Faraday (17911869) demonstrated the opposite effect, namely that moving a wire through a magnetic field could produce an electric current in the wire.

The experimental work of Oersted, Ampère, Faraday, and others was brought together in a brilliant theoretical work by Scottish physicist James Clerk Maxwell (18311879). Maxwell demonstrated that electricity and magnetism represent different aspects of the same fundamental force field.

Earth's magnetism

The magnetic force present in an object seems to be located in two distinct regions of the objects known as poles. One pole is known as the north magnetic pole, while the other is known as the south magnetic pole. The magnetic force appears to flow out of one pole and into the other pole. The region of space through which the magnetic force flows is called the magnetic field.

Earth itself acts like a giant magnet. One pole of Earth's magnet is close to the north geographic pole, and the other pole is close to the south geographic pole. The magnetic properties of Earth are thought to be due to the presence of a very large mass of iron located at the center of the planet. As that core rotates, it may generate the magnetic field that we can detect with a compass.

Nature of magnetism

The magnetic field is invisible. It can be detected, however, by spreading finely divided pieces of iron in the region around a magnet. In that case, the iron pieces arrange themselves in a pattern similar to that shown in the accompanying photograph. The white streaks in the photograph are known as magnetic lines of force, or flux lines. They indicate the regions in which the magnetic force appears to be strongest.

The laws describing magnetic poles are similar to those describing electrical forces. That is, like poles repel each other, and unlike poles attract each other. If two magnets are lined up with their south poles adjacent to (next to) each other, they will tend to push apart. If they are lined up with a north pole next to a south pole, they tend to draw close to each other. If an unmagnetized piece of iron is placed near either a north or a south pole, it is attracted to that pole.

Types of magnets

Two kinds of magnets exist: natural magnets and electromagnets. Magnetite and lodestone are two examples of natural magnets that occur in Earth. Any iron bar can also be made magnetic simply by rubbing it with magnetite, lodestone, or any other magnetic material. Bar magnets and horseshoe magnets are made in this way.

A second kind of magnet is an electromagnet. The magnetic field of an electromagnet is produced by wrapping an electric wire around a piece of iron. When an electric current flows through the wire, it creates a magnetic field in the iron. The strength of the magnetic field depends primarily on two factors: the number of turns of wire on the iron and the strength of the electric current.

The most powerful electromagnets known are made of superconducting materials. A superconducting material is one that carries an electric current without any resistance. Once an electric current is started in a superconducting material, it continues to travel through the materialessentially forever.

The magnetic field surrounding a natural magnet, such as a bar or horseshoe magnet, measures a few hundred gauss. The gauss is one of the units used to measure the strength of a magnetic field. The magnetic field produced by an electromagnet, by contrast, is in the range of a few tens of thousands of gauss. The highest magnetic field achieved by a superconducting electromagnetic approaches 100,000 gauss in strength.

Origin of magnetism

Magnetism is caused by the motion of electrons in an atom. Picture an atom, consisting of a central core, the nucleus, and one or more electrons traveling around that core. Those electrons exhibit two kinds of motion. First, they travel around the nucleus of the atom in a manner somewhat similar to the motion of planets around the Sun. Second, they spin on their own axes, much as planets spin on their own axes.

Now recall how an electric current flowing through a wire sets up a magnetic field around that wire. In much the same way, a moving electron sets up a magnetic field around itself. Both the orbiting motion of the electron around the nucleus and the electron spin create magnetic fields.

In a magnetic material, atoms group themselves into microscopic regions called domains. All of the atoms within any given domain are aligned in the same direction. The domain itself, therefore, acts like a very tiny magnet with a south pole and a north pole.

Under most circumstances, however, the domains in a magnetic material are arranged in random order. They point in every which direction and, overall, cancel each other out. The material itself is not magnetic.

When the material is stroked with a magnet, however, the domains all line themselves up according to the magnetic field of the magnet. All the north poles of the tiny domain magnets are pulled in one direction, and the south poles of those tiny magnets are pulled in the other direction. The material itself has now become magnetic.

Applications of magnetism

Electromagnets are important components of many appliances, ranging from machines as large as particle accelerators (atom-smashers) to devices as small as pocket radios. They are used in household appliances that include dishwashers and washing machines; in electric meters; in loudspeakers, telephones, and earphones; in magnetic recording and storing devices; and in MRI (magnetic resonance imaging) devices (a diagnostic tool now found in most hospitals).

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Magnetism." UXL Encyclopedia of Science. . 23 Apr. 2017 <>.

"Magnetism." UXL Encyclopedia of Science. . (April 23, 2017).

"Magnetism." UXL Encyclopedia of Science. . Retrieved April 23, 2017 from



The magnetic properties of materials were recognized by the ancient Greeks, Romans, and Chinese, who were familiar with lodestone, an iron oxide mineral that attracts iron objects. Although the attractive or repulsive forces that act between magnetic materials are manifestations of magnetism familiar to everybody, the origin of magnetism lies in the atomic structure of matter. Despite the fact that magnetism can be explained only by the quantum theory developed at the beginning of the twentieth century, qualitative predictions of magnetic properties can be made within the context of classical physics. Magnetic forces originate in the motion of charged particles, such as electrons. The electrons "spin" around their axis and move in orbits around the nucleus of the atom to which they belong. Both motions generate tiny electric currents in closed loops that in turn create magnetic dipole fields, just as the current in a coil does. When placed in a magnetic field, the tiny magnetic dipole fields tend to align with the external field.

According to their behavior in inhomogeneous magnetic fields, materials can be classified into three main categories: diamagnetic , paramagnetic, and ferromagnetic. Paramagnetic materials are attracted into a magnetic field. The main cause of this effect is the presence in the material of atoms that have a net magnetic moment composed of electron spin and orbital contributions.

When placed in a magnetic field, the magnetic moments of the atoms, which are otherwise randomly oriented, tend to align with the field and thus enhance the field. Paramagnetism is temperature dependent because increased thermal motion at higher temperatures impedes the alignment of the magnetic moments with the field. Diamagnetic materials are slightly repelled by a magnetic field. This effect occurs for materials that contain atoms in which the spin and orbital contributions to the magnetic moment cancel out. In this case, the interaction between the material and a magnetic field is caused by the occurrence of currents induced by the magnetic field in the atoms. The dipole fields corresponding to these currents are directed opposite to the applied magnetic field and cause expulsion of the material from the field. Ferromagnetic materials contain atoms that have magnetic moments that are aligned even in the absence of an applied magnetic field because of mutual interactions, creating a sizable net magnetic moment for domains of the material. The magnetic moments of domains can be randomly oriented unless a magnetic field is applied to the material.

Iron, cobalt, nickel, and their alloys are examples of ferromagnetic materials. These three elements are transition metals , and their atoms or ions have unpaired electrons in d orbitals. Rare-earth ions also have unpaired electrons situated in f orbitals. A detailed investigation of the properties of molecules that contain such metal ions in a magnetic field can provide significant information about how their electrons are distributed in orbitals. Typically, d orbitals of isolated atoms are degenerate (Figure 1a). This situation changes when the metal ions are part of molecules in which they experience a nonspherically symmetric environment. Figures 1b and 1c show the splitting of d orbitals for a transition metal ion that has six unpaired electrons and is situated in an environment of six atoms in an octahedral arrangement. Depending on the size of the splitting (the lighter shading in Figure 1) and the interelectron repulsion, the metal ion may have four unpaired electrons (Figure 1b) or no unpaired electrons (Figure 1c). This difference in electron distribution leads to significant differences in the magnetic properties of the molecules that contain such ions, with

the former being paramagnetic and the latter being diamagnetic. When there are multiple metal sites in a molecule, the spins at different metal ions can be either ferro-(parallel) or antiferro-magnetically (antiparallel) aligned to each other. Clever use of the magnetic properties for metal ions and of the interactions between spins manifested in molecular systems enables scientists to design and synthesize molecular systems with interesting properties, such as molecular magnets.

Magnetic materials are widely used for building technological devices and scientific tools. Classical examples are electromagnets that are used in motors, clutches, and breaking systems. The electromagnet makes use of an iron core situated in a solenoid through which electric current is passed. This current creates a magnetic field at the center of the solenoid that orients the magnetic moments in the domains of the iron core, which in turn results in a significant enhancement of the magnetic field at the core of the solenoid. Electromagnets can also be used to record information on magnetic tape, which has a ferromagnetic surface.

Finally, although atomic nuclei have significantly smaller magnetic moments than electrons, the study of their interaction with magnetic fields has many important applications. They enable the scientists in the biological and medical fields to elucidate the structure of biologically relevant molecules such as proteins and to diagnose diseases using magnetic resonance imaging.

see also Maxwell, James Clerk; Physical Chemistry.

Catalina Achim


Kittel, C. (1996). Introduction to Solid State Physics, 5th edition. New York: Wiley.

Miessler, G. L., and Tarr, D. A. (1999). Inorganic Chemistry, 2nd edition. Upper Saddle River, NJ: Prentice Hall.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Magnetism." Chemistry: Foundations and Applications. . 23 Apr. 2017 <>.

"Magnetism." Chemistry: Foundations and Applications. . (April 23, 2017).

"Magnetism." Chemistry: Foundations and Applications. . Retrieved April 23, 2017 from


magnetism Properties of matter and of electric currents associated with a field of force (magnetic field) and with a north-south polarity (magnetic poles). All substances possess these properties because orbiting electrons in their atoms produce a magnetic field; similarly, an external magnetic field affects the electron orbits. All substances possess weak magnetic (diamagnetic) properties and tend to align themselves with the field, but in some cases this diamagnetism is masked by the stronger forms of magnetism: paramagnetism and ferromagnetism. Paramagnetism is caused by electron spin, and occurs in substances having unpaired electrons in their atoms or molecules. The most important form of magnetism, ferromagnetism, is shown by substances such as iron and nickel, which can be magnetized by even a weak field due to the formation of tiny regions, called domains, that behave like miniature magnets and align themselves with an external field. In 1864, Scottish physicist James Clerk Maxwell produced a unified mathematical theory of electricity and magnetism (electromagnetism). The scientific branch concerned with the magnetic properties of the Earth is called geomagnetism.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"magnetism." World Encyclopedia. . 23 Apr. 2017 <>.

"magnetism." World Encyclopedia. . (April 23, 2017).

"magnetism." World Encyclopedia. . Retrieved April 23, 2017 from


mag·net·ism / ˈmagnəˌtizəm/ • n. a physical phenomenon produced by the motion of electric charge, resulting in attractive and repulsive forces between objects. ∎  the property of being magnetic. ∎ fig. the ability to attract and charm people: his personal magnetism attracted men to the brotherhood.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"magnetism." The Oxford Pocket Dictionary of Current English. . 23 Apr. 2017 <>.

"magnetism." The Oxford Pocket Dictionary of Current English. . (April 23, 2017).

"magnetism." The Oxford Pocket Dictionary of Current English. . Retrieved April 23, 2017 from