Skip to main content
Select Source:

Waste Disposal

Waste disposal

Waste management is the handling of discarded materials. Recycling and composting, which transform waste into useful products, are forms of waste management. The management of waste also includes disposal, such as landfilling.

Waste can be almost anything, including food, leaves, newspapers, bottles, construction debris, chemicals from a factory, candy wrappers, disposable diapers, old cars, or radioactive materials. People have always produced waste, but as industry and technology have evolved and the human population has grown, waste management has become increasingly complex.

A primary objective of waste management today is to protect the public and the environment from potentially harmful effects of waste. Some waste materials are normally safe, but can become hazardous if not managed properly. For example, 1 gal (3.75 l) of used motor oil can potentially contaminate one million gal (3,790,000 l) of drinking water .

Every individual, business, or organization must make decisions and take some responsibility regarding the management of his or her waste. On a larger scale, government agencies at the local, state, and federal levels enact and enforce regulations governing waste management. These agencies also educate the public about proper waste management. In addition, local government agencies may provide disposal or recycling services, or they may hire or authorize private companies to perform those functions.

Throughout history, there have been four basic methods of managing waste: dumping it, burning it, finding another use for it (reuse and recycling), and not creating the waste in the first place (waste prevention). How those four methods are utilized depends on the wastes being managed. Municipal solid waste is different from industrial, agricultural, or mining waste. Hazardous waste is a category that should be handled separately, although it sometimes is generated with the other types.

The first humans did not worry much about waste management. They simply left their garbage where it dropped. However, as permanent communities developed, people began to dispose of their waste in designated dumping areas. The use of such "open dumps" for garbage is still common in many parts of the world. Open dumps have major disadvantages, however, especially in heavily populated areas. Toxic chemicals can filter down through a dump and contaminate groundwater . The liquid that filters through a dump or landfill is called leachate. Dumps may also generate methane, a flammable and explosive gas produced when organic wastes decompose under anaerobic (oxygen-poor) conditions.

The landfill, also known as the "sanitary landfill," was invented in England in the 1920s. At a landfill, the garbage is compacted and covered at the end of every day with several inches of soil . Landfilling became common in the United States in the 1940s. By the late 1950s, it was the dominant method for disposing municipal solid waste in the nation.

Early landfills had significant problems with leachate and methane, but those have largely been resolved at facilities built since about the early 1970s. Well-engineered landfills are lined with several feet of clay and with thick plastic sheets. Leachate is collected at the bottom, drained through pipes, and processed. Methane gas is also safely piped out of many landfills.

The dumping of waste does not just take place on land. Ocean dumping, in which barges carry garbage out to sea, was once used as a disposal method by some United States coastal cities and is still practiced by some nations. Sewage sludge, or waste material from sewage treatment, was dumped at sea in huge quantities by New York City as recently as 1992, but this is now prohibited in the United States. Also called biosolids, sewage sludge is not generally considered solid waste, but it is sometimes composted with organic municipal solid waste.

Burning has a long history in municipal solid waste management. Some American cities began to burn their garbage in the late nineteenth century in devices called cremators. These were not very efficient, however, and cities went back to dumping and other methods. In the 1930s and 1940s, many cities built new types of more-efficient garbage burners known as incinerators. The early incinerators were rather dirty in terms of their emissions of air pollutants, and beginning in the 1950s they were gradually shut down.

However, in the 1970s, waste burning enjoyed another revival. These newer incinerators, many of which are still in operation, are called "resource recovery" or "waste-to-energy" plants. In addition to burning garbage, they produce heat or electricity that can be used in nearby buildings or residences, or sold to a utility. Many local governments became interested in waste-to-energy plants following the energy crisis in 1973. However, since the mid-1980s, it became difficult to find locations to build these facilities, mainly because of public opposition focused on air-quality issues.

Another problem with incineration is that it generates ash, which must be landfilled. Incinerators usually reduce the volume of garbage by 7090%. The remainder of the incinerated waste comes out as ash that often contains high concentrations of toxic substances.

Municipal solid waste will likely always be landfilled or burned to some extent. In the past 25 years, however, non-disposal methods such as waste prevention and recycling have become more common. Because of public concerns and the high costs of landfilling and burning (especially to build new facilities), local governments want to reduce the amount of waste that must be disposed in these ways.

Municipal solid waste is a relatively small part of the overall waste generated in the United States. More than 95% of the total 4.5 billion tons of solid waste generated in the United States each year is agricultural, mining, or industrial waste.

These wastes do not receive nearly as much attention as municipal solid waste, because most people do not have direct experience with them. Also, agricultural and mining wastes, which make up 88% of the overall total of solid waste, are largely handled at the places they are generated, that is, in the fields or at remote mining sites.

Mining nearly always generates substantial waste, whether the material being mined is coal , clay, sand , gravel, building stone, or metallic ore. Early mining concentrated on the richest lodes of minerals . Because modern methods of mining are more efficient, they can extract the desired minerals from veins that are less rich. However, much more waste is produced in the process.

Many of the plant and animal wastes generated by agriculture remain in the fields or rangelands. These wastes can be beneficial because they return organic matter and nutrients to the soil. However, modern techniques of raising large numbers of animals in small areas generate huge volumes of animal waste, or manure. Waste in such concentrated quantities must be managed carefully, or it can contaminate groundwater or surface water.

Industrial wastes that are not hazardous have traditionally been sent to landfills or incinerators. The rising cost of disposal has prompted many companies to seek alternative methods for handling these wastes, such as waste prevention and recycling. Often a manufacturing plant can reclaim certain waste materials by feeding them back into the production process.

Hazardous wastes are materials considered harmful or potentially harmful to human health or the environment. Wastes may be deemed hazardous because they are poisonous, flammable, or corrosive, or because they react with other substances in a dangerous way.

Industrial operations have produced large quantities of hazardous waste for hundreds of years. Some hazardous wastes, such as mercury and dioxins, may be released as gases or vapors. Many hazardous industrial wastes are in liquid form. One of the greatest risks is that these wastes will contaminate water supplies.

An estimated 60% of all hazardous industrial waste in the United States is disposed using a method called deep-well injection. With this technique, liquid wastes are injected through a well into an impervious rock formation that keeps the waste isolated from groundwater and surface water. Other methods of underground burial are also used to dispose hazardous industrial waste and other types of dangerous material.

Pesticides used in farming may contaminate agricultural waste. Because of the enormous volumes of pesticides used in agriculture, the proper handling of unused pesticides is a daunting challenge for waste managers. Certain mining techniques also utilize toxic chemicals. Piles of mining and metal-processing waste, known as waste rock and tailings, may contain hazardous substances. Because of a reaction with the oxygen in the air, large amounts of toxic acids may form in waste rock and tailings and leach into surface waters.

Public attitudes also play a pivotal role in decisions about waste management. Virtually every proposed new landfill or waste-to-energy plant is opposed by people who live near the site. Public officials and planners refer to this reaction as NIMBY, which stands for "Not In My BackYard." If an opposition group becomes vocal or powerful enough, a city or county council is not likely to approve a proposed waste-disposal project. The public also wields considerable influence with businesses. Recycling and waste prevention initiatives enjoy strong public support. About 19% of United States municipal solid waste was recycled or composted in 1994, 10% was incinerated, and 71% was landfilled.

Preventing or reducing waste is typically the least expensive method for managing waste. Waste prevention may also reduce the amount of resources needed to manufacture or package a product. For example, most roll-on deodorants once came in a plastic bottle, which was inside a box. Beginning about 1992, deodorant manufacturers redesigned the bottle so that it would not tip-over easily on store shelves, which eliminated the need for the box as packaging. This is the type of waste prevention called source reduction. It can save businesses money, while also reducing waste.

Waste prevention includes many different practices that result in using fewer materials or products, or using materials that are less toxic. For example, a chain of clothing stores can ship its products to its stores in reusable garment bags, instead of disposable plastic bags. Manufacturers of household batteries can reduce the amount of mercury in their batteries. In an office, employees can copy documents on both sides of a sheet of paper, instead of just one side. A family can use cloth instead of paper napkins.

Composting grass clippings and tree leaves at home, rather than having them picked up for disposal or municipal composting, is another form of waste prevention. A resident can leave grass clippings on the lawn after mowing (this is known as grass-cycling), or can compost leaves and grass in a backyard composting bin, or use them as a mulch in the garden.

When the current recycling boom began in the late 1980s, markets for the recyclables were not sufficiently considered. A result was that some recyclable materials were collected in large quantities but could not be sold, and some ended up going to landfills. Today, the development of recycling markets is a high priority. "Close the loop" is a catch-phrase in recycling education; it means that true recycling (i.e., the recycling loop) has not taken place until the new product is purchased and used.

To boost recycling markets, many local and state governments now require that their own agencies purchase and use products made from recycled materials. In a major step forward for recycling, President Bill Clinton issued an executive order in 1993 requiring the federal government to use more recycled products.

Many managers of government recycling programs feel that manufacturers should take more responsibility for the disposal of their products and packaging, rather than letting municipalities bear the brunt of the disposal costs. An innovative and controversial law in Germany requires manufacturers to set up collection and recycling programs for disused packaging of their products.

The high cost of government-created recycling programs is often criticized. Supporters of recycling argue it is still less expensive than landfilling or incineration, when all costs are considered. Another concern about recycling is that the recycling process itself may generate hazardous wastes that must be treated and disposed.

Recycling of construction and demolition (C&D) debris is one of the growth areas for recycling. Although C&D debris is not normally considered a type of municipal solid waste, millions of tons of it have gone to municipal landfills over the years. If this material is separated at the construction or demolition site into separate piles of concrete, wood, and steel, it can usually be recycled.

Composting is considered either a form of recycling, or a close relative. Composting occurs when organic waste such as yard waste, food waste, and paperis broken down by microbial processes. The resulting material, known as compost, can be used by landscapers and gardeners to improve the fertility of their soil.

Yard waste, primarily grass clippings and tree leaves, makes up about one-fifth of the weight of municipal solid waste. Some states do not allow this waste to be disposed. These yard-waste bans have resulted in rapid growth for municipal composting programs. In these programs, yard waste is collected by trucks (separately from garbage and recyclables) and taken to a composting plant, where it is chopped up, heaped, and regularly turned until it becomes compost.

Waste from food-processing plants and produce trimmings from grocery stores are composted in some parts of the country. Residential food waste is the next frontier for composting. The city of Halifax, in Canada, collects food waste from households and composts it in large, central facilities.

Biological treatment, a technique for handling hazardous wastes, could be called a high-tech form of composting. Like composting, biological treatment employs microbes to break down wastes through a series of metabolic reactions. Many substances that are toxic, carcinogenic (cancer-causing), or undesirable in the environment for other reasons can be rendered harmless through this method.

Extensive research on biological treatment is in progress. Genetic engineering, a controversial branch of biology dealing with the modification of genetic codes, is closely linked with biological treatment, and could produce significant advances in this field.

Waste management became a particularly expensive proposition during the 1990s, especially for disposal. Consequently, waste managers constantly seek innovations that will improve efficiency and reduce costs. Several new ideas in land-filling involve the reclamation of useful resources from wastes.

For example, instead of just burning or releasing the methane gas that is generated within solid-waste landfills, some operators collect this gas, and then use it to produce power locally or sell it as fuel. At a few landfills, managers have experimented with a bold but relatively untested concept known as landfill mining. This involves digging up an existing landfill to recover recyclable materials, and sometimes to re-bury the garbage more efficiently. Landfill mining has been criticized as costly and impractical, but some operators believe it can save money under certain circumstances.

In the high-tech world of incineration, new designs and concepts are constantly being tried. One waste-to-energy technology for solid waste being introduced to the United States is called fluidized-bed incineration. About 40% of incinerators in Japan use this technology, which is designed to have lower emissions of some air pollutants than conventional incinerators.

A 1994 United States Supreme Court ruling could increase the cost of incineration significantly. The Court ruled that some ash produced by municipal solid-waste incinerators must be treated as a hazardous waste, because of high levels of toxic substances such as lead and cadmium. This means that incinerator ash now has to be tested, and part or all of the material may have to go to a hazardous waste landfill rather than a standard landfill.

A much smaller type of incinerator is used at many hospitals to burn medical wastes, such as blood, surgical waste, syringes, and laboratory waste. The safety of these medical waste incinerators has become a major issue in some communities. A study by the Environmental Protection Agency released in 1994 found that medical waste incinerators were leading sources of dioxin emissions into the air. The same study warned that dioxins, which can be formed by the burning of certain chemical compounds, pose a high risk of causing cancer and other health hazards in humans.

The greatest impetus for waste prevention will likely come from the public. More and more citizens will come to understand that pesticides, excessive packaging, and the use of disposable rather than durable items have important environmental costs. Through the growth of the information society, knowledge about these and other environmental issues will increase. This should result in a continuing evolution towards more efficient and environmentally sensitive waste management.

See also Atmospheric pollution; Greenhouse gases and greenhouse effect; Water pollution and biological purification

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Waste Disposal." World of Earth Science. . Encyclopedia.com. 18 Aug. 2017 <http://www.encyclopedia.com>.

"Waste Disposal." World of Earth Science. . Encyclopedia.com. (August 18, 2017). http://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/waste-disposal

"Waste Disposal." World of Earth Science. . Retrieved August 18, 2017 from Encyclopedia.com: http://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/waste-disposal

Waste Management

Waste management

Waste management is the handling of discarded materials. The term most commonly applies to the disposition of solid wastes, which is often described as solid waste management. One form of waste management involves the elimination of undesirable waste products by methods such as landfilling and incineration. But recycling and composting, which transform waste into useful products, also are forms of waste management.

The term waste can apply to a wide variety of materials, including discarded food, leaves, newspapers, bottles, construction debris, chemicals from a factory, candy wrappers, disposable diapers, and radioactive materials. Civilization has always produced waste. But as industry and technology have evolved and the world's population has grown, waste management has become an increasingly difficult and complex problem.

A primary objective of waste management today is to protect the public and the environment from potential harmful effects of waste. Some waste materials are normally safe but can be hazardous if not managed properly. One gallon (3.75 liters) of used motor oil, for example, can contaminate one million gallons (3,750,000 liters) of water.

Who manages waste? Every individual, business, and industry must make decisions and take some responsibility regarding its own waste. On a larger scale, government agencies at the local, state, and federal levels enact and enforce waste management regulations. These agencies also educate the public about proper waste management. In addition, local government agencies may provide disposal or recycling services themselves, or they may hire private companies to perform those functions.

Forms of waste

Most solid wastes can be subdivided into one of three major categories: municipal solid wastes; agricultural, mining, and industrial wastes; and hazardous wastes. Municipal solid waste is what most people think of as garbage, refuse, or trash. It is generated by households, businesses (other than heavy industry), and institutions such as schools and hospitals.

Words to Know

Biosolids: Another name for sewage sludge.

Cremators: Primitive devices for incinerating municipal wastes.

Dump (or open dump): An area in which wastes are simply deposited and left to rot or decay.

Hazardous wastes: Wastes that are poisonous, flammable, or corrosive, or that react with other substances in a dangerous way.

Incineration: The burning of solid waste as a disposal method.

Landfilling: A land disposal method for solid waste in which garbage is covered every day with several inches of soil.

Leachate: The liquid that filters through a dump or landfill.

Recycling: The use of waste materials, also known as secondary materials or recyclables, to produce new products.

Resource recovery plant: An incinerator that uses energy produced by the burning of solid wastes for some useful purpose.

Source reduction: Reduction in the quantity or the toxicity of material used for a product or packaging; a form of waste prevention.

Tailings: Piles of mine wastes.

Waste prevention: A waste management method that involves preventing waste from being created, or reducing waste.

Waste-to-energy plant: An incinerator that uses energy produced by the burning of solid wastes for some useful purpose.

Although we may be very conscious of municipal wastes, they actually represent only a small fraction of all solid wastes produced annually. Indeed, more than 95 percent of the 4.5 billion tons of solid waste generated in the United States each year come from agriculture, mining, and industry. These forms of solid waste are less visible to the ordinary person because they are usually generated at remote mining sites or in the fields.

Mining nearly always generates substantial waste, whether the material being mined is coal, clay, sand, gravel, building stone, or metallic ore. Early mining techniques concentrated on the removal of ores with the highest concentration of the desired mineral. Because modern methods of mining are more efficient, they can extract the desired minerals from veins that are less rich. However, much more waste is produced in the process.

Many of the plant and animal wastes generated by agriculture remain in the fields or rangelands. These wastes can be beneficial because they return nutrients to the soil. But modern techniques of raising large numbers of animals in small areas generate great volumes of animal waste, or manure. Waste in such quantities must be managed carefully, or it can contaminate groundwater or surface water.

Hazardous waste

Hazardous wastes are materials considered harmful or potentially harmful to human health or the environment. Wastes may be deemed hazardous because they are poisonous, flammable, or corrosive, or because they react with other substances in a dangerous way.

Industrial operations have produced large quantities of hazardous waste for hundreds of years. Some hazardous wastes, such as mercury and dioxins, may be released as gases. Many hazardous industrial wastes are in liquid form. One of the greatest risks is that these wastes will contaminate water supplies.

Pesticides used in farming may contaminate agricultural waste. Because of the enormous volumes of pesticides used in agriculture, the proper handling of unused or waste pesticides is a daunting challenge for modern waste management. Certain mining techniques also utilize toxic chemicals. Piles of mining waste, known as tailings, may contain hazardous

substances. When these substances react with the oxygen in the air, toxic acids may form and may be washed into the groundwater by rain.

Hazardous wastes come from the home as well. Many common household products contain toxic chemicals. Examples include drain cleaner, pesticides, glue, paint, paint thinner, air freshener, and nail polish. Twenty years ago, most people dumped these products in the garbage, even if the containers were not empty. But local governments do not want them in the garbage. They also do not want residents to pour leftover household chemicals down the drain, since municipal sewage treatment plants are not well-equipped to remove them.

Management of wastes

Throughout history, four basic methods for managing wastes have been used: dumping; incineration (burning); recycling; and waste prevention. How these four methods are utilized depends on the kind of wastes being managed. Municipal solid waste is much different than industrial, agricultural, or mining waste. And hazardous waste poses such serious problems that it needs to be handled by specialized techniques, even when it is generated with other types of wastes.

Landfills. Early humans did not worry much about waste management. They simply left their garbage where it dropped. But as permanent communities developed, people began to place their waste in designated dumping areas. The use of such open dumps for garbage is still common in some parts of the world.

But open dumps have major disadvantages, especially in heavily populated areas. Toxic chemicals can filter down through a dump and contaminate groundwater. (The liquid that filters through a dump or land-filljust as water percolates or filters through coffee grounds to make coffeeis called leachate.) Dumps also may generate methane, an explosive gas produced when organic wastes decompose under certain conditions.

In many parts of the world today, open dumps have been replaced by landfills, also known as sanitary landfills. The sanitary landfill was apparently invented in England in the 1920s. At a landfill, garbage is covered at the end of every day with several inches of soil. Landfilling became common in the United States in the 1940s. By the late 1950s, it was the dominant solid waste disposal method in the nation.

Early landfills had significant leachate and methane problems. But those have largely been resolved at landfills built in the past 20 years. Today's landfills are lined with several feet of clay and with thick plastic sheets. Leachate is collected at the bottom, drained through pipes, and processed. Methane gas also is safely piped out of the landfill.

The dumping of waste does not take place on land only. Ocean dumping makes use of barges that carry garbage out to sea. This technique was once used as a disposal method by some U.S. coastal cities and is still practiced by some nations. Sewage sludge, or processed sewage, was dumped at sea in huge quantities by New York City until 1992, when it was finally prohibited. Also called biosolids, sewage sludge is not generally considered solid waste but is sometimes composted with organic municipal solid waste.

Incineration. Incineration has a long history in municipal solid waste management. Some American cities began to burn their garbage in the late nineteenth century in devices called cremators. These devices were not very efficient, however, and cities eventually went back to dumping or other methods. In the 1930s and 1940s, many cities built new types of garbage burners known as incinerators. Many incinerators have now been shut down, primarily because of the air pollution they create.

Waste burning enjoyed yet another revival in the 1970s and 1980s. The new incinerators, many of which are still in operation, are called resource recovery or waste-to-energy plants. In addition to burning garbage, they produce heat or electricity that is used in nearby buildings or residences or sold to a utility. Many local governments became interested in waste-to-energy plants following the U.S. energy crisis in 1973. But, by the mid-1980s, it had become difficult to find locations to build these facilities, once again mainly because of air quality issues.

Another problem with incineration is that it generates ash, which must be landfilled. Incinerators usually reduce the volume of garbage by 70 to 90 percent. The rest comes out as ash that often contains high concentrations of toxic substances.

Recycling and waste prevention. Municipal solid waste will probably always be landfilled or burned to some extent. Since the mid-1970s, however, nondisposal methods such as waste prevention and recycling have become more popular. Because of public concerns and the high costs of landfilling and incineration, local governments want to reduce the amount of waste that needs to be disposed.

Even the earliest civilizations recycled some items before they became garbage. Broken pottery was often ground up and used to make new pottery, for example. Recycling has taken many forms. One unusual type of recycling, called reduction, was common in large U.S. cities from about 1900 to 1930. In reduction plants, wet garbage, dead horses, and other dead animals were cooked in large vats to produce grease and fertilizer. A more familiar, and certainly more appealing, type of recycling took place during World War II (193945), when scrap metal was collected to help the war effort. Modern-day recycling has had two recent booms, from about 1969 to 1974 and another that began in the late 1980s. At the beginning of the twenty-first century, the recycling rate in the United States had risen to 28 percent, an increase of more than 10 percent from a decade before.

Reuse and repair are the earliest forms of waste prevention, which also is known as waste reduction. When tools, clothes, and other necessities were scarce, people naturally repaired them again and again. When they were beyond repair, people found other uses for them.

One form of waste prevention, called source reduction, is a reduction in the quantity or the toxicity of the material used for a product or packaging.

Industrial waste management

Industrial wastes that are not hazardous have traditionally been sent to landfills or incinerators. The rising cost of disposal has prompted many companies to seek alternative methods for handling these wastes. Often, a manufacturing plant can reclaim certain waste materials by feeding them back into the production process.

An estimated 60 percent of all hazardous industrial waste in the United States is disposed of with a method called deep well injection. With this technique, liquid wastes are injected into a well located in a type of rock formation that keeps the waste isolated from groundwater and surface water. Other underground burial methods are also used for hazardous industrial waste and other types of dangerous waste.

Hazardous wastes are disposed of at specially designed landfills and incinerators. A controversial issue in international relations is the export of hazardous waste, usually from industrial countries to developing nations. This export often takes place with the stated intent of recycling, but some of the wastes end up being dumped.

[See also Composting; Pollution; Recycling ]

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Waste Management." UXL Encyclopedia of Science. . Encyclopedia.com. 18 Aug. 2017 <http://www.encyclopedia.com>.

"Waste Management." UXL Encyclopedia of Science. . Encyclopedia.com. (August 18, 2017). http://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/waste-management

"Waste Management." UXL Encyclopedia of Science. . Retrieved August 18, 2017 from Encyclopedia.com: http://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/waste-management

Waste Disposal

WASTE DISPOSAL

WASTE DISPOSAL. Societies have always had to deal with waste disposal, but what those societies have defined as waste, as well as where would be that waste's ultimate destination, has varied greatly over time. Largescale waste disposal is primarily an urban issue because of the waste disposal needs of population concentrations and the material processing and production-type activities that go on in cities. Waste is often defined as "matter out of place" and can be understood as part of a city's metabolic processes. Cities require materials to sustain their life processes and need to remove wastes resulting from consumption and processing to prevent "nuisance and hazard." Well into the nineteenth century, many American cities lacked garbage and rubbish collection services. Cities often depended on animals such as pigs, goats, and cows, or even buzzards in southern cities, to consume slops and garbage tossed into the streets by residents. In the middle of the century, health concerns stimulated such larger cities as New York to experiment with collection, often by contracting out. Contractors and municipalities often discarded wastes into near by waterways or placed them on vacant lots on the city fringe.

Rapid urbanization in the late nineteenth century increased the volume of wastes and aroused concern over nuisances and hazards. People had always viewed garbage as a nuisance, but the public-health movement, accompanied by widespread acceptance of anticontagionist theory, emphasized the rapid disposal of organic wastes to prevent epidemics. Concern about potential disease drove municipalities to consider collection, usually by setting up their own services, granting contracts, or allowing householders to make private arrangements. By the late nineteenth century, cities were relying on contractors, although there were shifts between approaches. Cities apparently preferred contracting to municipal operation because of cost as well as the absence of a rationale for government involvement in a domain with many private operators.

During the first half of the twentieth century, municipal control over collection gradually increased to between 60 and 70 percent, largely for health and efficiency reasons. Just as they had moved from private to public provision of water because of concerns over inability of the private sector to protect against fire and illness, cities began to question leaving waste removal to contractors. Contractor collection was often disorganized, with frequent vendor changes, short-term contracts, and contractor reluctance to invest in equipment. Municipal reformers concluded that sanitation was too important to be left to profit-motivated contractors. Initially, responsibility went to departments of public health, but as the germ theory of disease replaced anticontagionism, control over the function shifted to public works departments. Increasingly, cities viewed garbage collection as an engineering rather than a public health problem, and municipal concern shifted from health to fire hazards and the prevention of nuisances such as odors and flies.

Changes in both composition of wastes (or solid wastes, as they were now called) and collection and disposal methods occurred after World War II. A major fraction of municipal solid wastes before the war had been ashes, but as heating oil and natural gas displaced coal, ashes became less important. The solid wastes generated by individuals did not decrease, however, because there were sharp rises in the amount of nonfood materials, such as packaging and glass. Another change occurred in regard to disposal sites. Before the war, cities had disposed of wastes in dumps, on pig farms (a form of recycling), by ocean dumping, or by incineration. A few cities used garbage reduction or composting. For nuisance and health reasons, cities found these methods unacceptable, and in the decades after 1945, they adopted the so-called sanitary landfill method of waste disposal, which involved the systematic placing of wastes in the ground using a technology such as a bulldozer or a bull clam shovel. The sanitary landfill, or tipping, had been widely used in Great Britain before the war. In the late 1930s, Jean Vincenz, director of public works in Fresno, California, had developed it. Vincenz used the sanitary landfill to deal with solid wastes at army camps during the war. Public works and public health professionals and municipal engineers viewed the technique as a final solution to the waste disposal problem. Between 1945 and 1960, the number of fills increased from 100 to 1,400.

A further development, starting in the late 1950s, involved a rise in private contracting. Firms that provided economies of scale, sophisticated management, and efficient collection absorbed smaller companies and replaced municipal operations. Sharp rises in the costs of disposal as well as a desire to shift labor and operating costs to the private sector also played a role. In the 1980s, private contracting grew rapidly because it was the most cost effective method available.

In the 1960s, the environmental movement raised questions about solid-waste disposal and the safety of sanitary landfills, both in terms of the environment and health. In the 1950s, states had strengthened environmental regulations, while the federal government followed with the Solid Waste Act in 1965 and the Resource Conservation and Recovery Act in 1976. Higher standards for landfills raised costs. Increasingly, society sought disposal methods such as recycling that appeared protective of health and environmentally benign. By the last decade of the twentieth century, as new techniques for utilizing recycled materials and controlling waste generation developed, society seemed on its way to a more sustainable balance.

The tendency of Americans to consume everincreasing amounts of goods, however, has dampened the rate of improvement. For instance, Americans are discarding an increasing number of computers every year. Monitors especially consistitute an environmental danger because they contain lead, mercury, and cadmium. If disposed of in landfills, they may leach these dangerous metals into the soil and groundwater. Therefore, concerned consumers are pushing manufacturers to create collection and recycling programs for outdated equipment.

Nevertheless, recycling programs have not proven the anticipated panacea for problems in solid-waste disposal. Quite simply, the supply of recyclable materials generally outstrips demand. A strong market exists for aluminum cans, but newspaper, plastic, and glass remain less attractive to buyers. For example, removing the ink from newspapers is expensive, and the wood fibers in paper do not stand up well to repeated processing. Thus, just because it is theoretically possible to recycle a material, it does not mean that recycling actually will happen. This difficulty suggests that consumers hoping to limit the amount of material in landfills would do well to buy products with less initial packaging and of materials that recycle easily.

BIBLIOGRAPHY

Luton, Larry S. The Politics of Garbage: A Community Perspective on Solid Waste Policy Making. Pittsburgh, Pa.: University of Pittsburgh Press, 1996.

Melosi, Martin V. The Sanitary City: Urban Infrastructure in America from Colonial Times to the Present. Baltimore: Johns Hopkins University Press, 2000.

———. Effluent America: Cities, Industry, Energy, and the Environment. Pittsburgh, Pa.: University of Pittsburgh Press, 2001.

Whitaker, Jennifer Seymour. Salvaging the Land of Plenty: Garbage and the American Dream. New York: W. Morrow, 1994.

Joel A.Tarr/a. e.

See alsoEnvironmental Business ; Environmental Movement ; Environmental Protection Agency ; Food, Fast ; Hazardous Waste ; Plastics ; Printing Industry ; Recycling ; Water Pollution .

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Waste Disposal." Dictionary of American History. . Encyclopedia.com. 18 Aug. 2017 <http://www.encyclopedia.com>.

"Waste Disposal." Dictionary of American History. . Encyclopedia.com. (August 18, 2017). http://www.encyclopedia.com/history/dictionaries-thesauruses-pictures-and-press-releases/waste-disposal

"Waste Disposal." Dictionary of American History. . Retrieved August 18, 2017 from Encyclopedia.com: http://www.encyclopedia.com/history/dictionaries-thesauruses-pictures-and-press-releases/waste-disposal