Skip to main content
Select Source:

Life Sciences

Life Sciences

The life sciences, defined as biology and related subjects, encompass the detailed study of living organisms, which are broadly distinguished from inorganic matter through the capacity for growth, function, and change preceding death. Biology is not limited to physiology, the study of the growth and function of living organisms. It also includes the study of biochemical reactions taking place in particular cells of particular organs. At a physical level, biophysics considers, for example, electrical changes taking place across membranes. Even more specific is the field of molecular biology, which attempts to unravel the changes that occur in molecules during biochemical reactions. Genetic science is the study of molecules that act as templates of information for certain biochemical reactions and that are passed on to the next generation. Yet the life sciences include the study of more than just the interior of living organisms and the biological reactions in the cells of living organisms. The life sciences also include ecology, the study of the exterior context of particular environments and the interrelationships between species. More broadly, animal behaviorists examine the way animals react to environments, and psychologists explore the possible reasons for this behavior.

The different life sciences pose challenges to theological and religious interpretations of reality. Put simply, if the life sciences can offer explanations for the way life functions on Earth, there is no need to invoke a divine creator. Is it possible to recover the belief held in the seventeenth century that all aspects of creation are the works of a divine mind? Or, if one accepts that God creates the world through the processes of biology, how far might it be possible to take such knowledge into human hands? Do people have the right to become co-creators with God in shaping the course of their own evolution and that of other species? One's view of ethics will depend on the particular view of God that one presupposes. Another question often asked is how far the scientific understanding of life is equipped to answer the complex ethical questions that have emerged in contested areas such as genetics and environmentalism. In these scenarios it may be that theology has more to offer than simply a response to the problems that science poses to its own fundamental beliefs.

Exploring the science

Having given a rough sketch of the range of sciences included in the concept of the life sciences, it is necessary to explore the task and presuppositions of the different sciences in order to understand their theoretical interrelationships. Molecular biology, for example, made a dramatic contribution to the study of genetics by defining the double helical structure of deoxyribonucleic acid (DNA) found in chromosomes. This discovery, published in 1953, is attributed to James Watson and Francis Crick, although Rosalind Franklin and Maurice Wilkins also provided vital experimental data. DNA consists of two strands of sugars and phosphates that are joined together by pairing of particular bases attached to the sugars. The pairing of bases is always the same, adenine with thymine and cytosine with guanine. The DNA unravels once a gene becomes active so that a particular section of DNA codes for a particular carrier nucleic acid, and thence to a particular protein. Moreover, the DNA can replicate itself by unwinding, after which each single strand pairs with another.

Once scientists defined the structure of DNA, it became possible not only to understand the reasons for genetic diseases, but also to develop ways of changing DNA structure by cutting or adding particular sections of DNA to the existing template. The practical science to which genetics relates most naturally is medicine, though it also has implications for commercial use in biotechnology.

It is possible to think about the sciences as operative at different levels in the study of living organisms. At the most fundamental level, molecular biologists examine changes in molecules during particular reactions. However, some would argue that the physical changes taking place are even more primary than this, so that changes in physical fields are coincident with certain chemical and molecular changes. The movement of charged molecules or ions across membranes, for example, is accompanied by electrical changes in the membrane. Biophysicists are interested in unravelling the details of such changes. At the next highest level, cell biologists explore reactions taking place at a cellular level, for example, the biochemical interchange between different parts of the cell or organelles. Cells make up organs, and the deciphering of the function of different organs in relation to the overall health of the organism delineates the field of physiology. For example, the way organisms use nutrients is the concern of physiologists. The idea of nutrients is suggestive of the interaction between the organisms and their environment, and one of the concerns of ecologists is nutrient exchange between species.

Ecology is important as far as the human sciences are concerned because it bears on human interrelationships with other living creatures. At the broadest level, geophysiologists examine the relationship between living creatures and the planet as a whole. This science, provocatively named the Gaia Hypothesis by James Lovelock in 1969, suggests a different way of doing science, one that, like ecology, examines relationships, rather than biochemical or biophysical reactions. Lovelock's hypothesis is that the Earth's relatively stable temperature and the gaseous composition of its atmosphere are not accidental; rather the sum total of all living things, or biota, directly contribute to this stability. His hypothesis is difficult to prove, so it has been marginalized by the scientific establishment.

The history of the way life emerged on the planet looks to fundamental questions about the origins of life itself. Charles Darwin's theory of evolution explored the biological processes that underlie the diversity of life on this planet. His theory of natural selection states that the survival of individuals in a species depends on those characteristics that render them most fit for a particular environment, and therefore most able to have the most offspring. The scientific study of genetics has defined more precisely the mechanism through which these characteristics are inherited. Evolutionary ideas link genetic science with ecological science. On the one hand, the history of the evolution of species depends on genes passing from one generation to the next, the so-called selfish gene theory exemplified most famously by biologist Richard Dawkins. On the other hand, the ways genes are expressed depend on a particular environment, so that the combined effect of genetics and environment makes up the phenotype of the individual organism. Lovelock's hypothesis challenges the assumption that organisms are always adapted to their environment by suggesting that the activities of organisms in and of themselves not only influence but also regulate their environment. Most biologists, however, accept Darwin's basic theory of natural selection.

The life sciences are not only concerned with the history or origin of life on Earththey also have their own story of development. Ecology, for example, in the early part of the twentieth century considered its task to be the examination of succession of plant communities that established particular habitats, niches, or homes for other species. After 1945 ecologists began to look at the relationships between species in terms of energy exchange, all contributing to a particular ecosystem. Ecosystems lend stability and equilibrium to communities of organisms, however, ecologists have become less convinced that ecosystems function as stable communities. Instead of balance there is disturbance; instead of equilibrium, there is a fluid landscape of different, loosely assembled, environments. In addition, the scale of measurements used is important; ecology could be studied at the level of the leaf, canopy, patch, or forest, moving up the scale of organization. Higher up the scale different emerging properties appear. Debates exist concerning the degree to which these properties are simply dependent on activities at the lower levels of organization (bottom-up causation ), are unique to their own level, or perhaps even a result of activities further up the scale (top-down causation ). Emergent properties are still open to scientific consideration. The philosophical idea that these properties consist of the addition of a unique substance known as vitalism is rejected by contemporary science. Some writers, by their suggestion that Gaia is a living organism, have interpreted Lovelock's ideas in such a way that it comes close to this view.

Exploring issues in science and religion.

Darwin's theory of evolution poses challenges to the Christian idea of divine creation and design. The way theologians respond to this challenge is likely to influence the way they approach the life sciences in general. For example, if Darwin's theory is rejected, then it is likely that a conservative approach to genetic science will ensue, and there will be resistance to most, if not all, genetic engineering. According to this view, the diversity of species on the planet is the result of divine fiat associated with the story of Genesis.

Those in broad agreement with Darwinian science may either retain a classical model of God as creator of the world, with God creating through evolutionary processes, or they embed their view of God more specifically in biological processes themselves, so that God evolves with biological change. While both views can support technological change, the emphasis is different. For Celia Deane-Drummond, for example, God may be viewed as divine wisdom, which creates the world in love through wisdom. Hence the diversity of life is affirmed as the gift of God. Each species needs to be given respect on the basis that each is loved by God, even though God has allowed changes to evolve. Although the classical view of God is associated with an understanding of God as omnipotent and omnipresent, it is possible to affirm the transcendence of God without assuming a static and remote model of who God is. If changes are to be made in the genetic makeup of species, then these changes need to take into account the particular telos or purpose of each individual species as far as it is possible to understand it. Moreover, those who do attempt to re-order the natural world via bio-chemistry need to be aware that it requires a particular gift, namely the gift of wisdom and discernment, in order to assess the limits of such attempts.

The alternative view perceives God not so much as "other" to creation, but as one who allows creation to emerge and become itself through divine activity. Accordingly, for Philip Hefner, humans can become co-creators with God and look to their individual freedom and individuality as the basis for change. Just because humans have more freedom does not mean that God is in some way restricted in freedom. Genetic determinism is rejected by many authors, such as Ted Peters, who argue that human beings are more that just products of genetic activity. As co-creators humans have the authority to make changes to the genetics of human and other species. The suffering of those with genetic diseases engenders compassion that calls for action. The failure to contribute to such a change when the knowledge exists amounts to apathy, rather than arrogance. There are important issues in human genetics, but the issues depend more on analysis of the risks and benefits of particular actions, rather than on any fundamental resistance to change. Many see the responsible re-ordering of the world as a mandate for human beings; the gift from God is the gift of science and technology.

Both alternatives discussed above are in broad agreement about the limitations of extending biological understanding of reality to cultural experience. Stated simply, sociobiologists find in Darwin's theory of evolution reasons for the emergence not just of physical traits, but also of human character attributes. The philosopher Holmes Rolston III has argued convincingly that attempts to trace complex ethical characteristics to genetic changes are simplistic. He believes that although the tendency to socialize may have a genetic component, the content of moral laws cannot arise only from genes. However, while the first view would see the shape of such moral law as taking its orientation from the eternal law of God, the second view lays emphasis on the moral freedom of individuals to devise their own laws, where the will of God in this case is somewhat diffuse because God is part of the process of change. It is also not clear according to this view what contribution theology can make to debates over genetic change, other than showing that it is possible to affirm science and be Christian.

There are also wider environmental issues that impinge on genetic science when it is applied to biotechnology. Important questions include the effect of introducing new genetic varieties on human communities set in ecological communities. Plant and animal breeding has taken place for many millennia, but the tools now available in genetic science allow genes to be transferred across species in a way that is unique. What once took years can now be achieved in days. Many ecologists are concerned about the loss of diversity and other possible damaging influences on fragile ecological communities. Yet the understanding of ecology as inclusive of human activity and in flux, rather than equilibrium, needs to be taken into account. There is a clash between those in the biotechnological industry, keen to introduce change for the sake of individual benefits such as pest resistance, and those more inclined to consider the wider impact of such changes on natural habitats. Theologians are being forced to consider the complexity of these social issues in deliberations about genetics and environment. Some suggest that complexity itself challenges the merit of secular approaches to ethics that simply look to the consequences of actions in terms of risks and benefits. Might there, indeed, be a way of reshaping the direction of science so that it does not look at problems narrowly, but considers social issues and the wider context of public debate? Some suggest that the answer is a return to a more holistic view of science, one that seeks knowledge not just as information, but in the broader framework of a search for wisdom.

See also Created Co-Creator; DNA; Ecology; Evolution, Biological; Gaia Hypothesis; Life; Life, Origins of; Life, Religious and Philosophical Aspects; Selfish Gene; Sociobiology


dawkins, richard. the selfish gene. london: paladin, 1978.

deane-drummond, celia. creation through wisdom: theology and the new biology. edinburgh, uk: t&t clark, 2000.

deane-drummond, celia. biology and theology today: exploring the boundaries. london: scm press, 2001.

deane-drummond, celia, and szerszynski, bronislaw. re- ordering nature: theology, society and the new genetics. edinburgh, uk: t&t clark, 2002.

hefner, philip. the human factor: evolution, culture, and religion. minneapolis, minn.: fortress press, 1993.

lovelock, james. gaia: a new look at life on earth. oxford: oxford university press, 1979.

northcott, michael. the environment and christian ethics. cambridge, uk: cambridge university press, 1996.

peacocke, arthur. theology for a scientific age. enlarged edition. london: scm press, 1993.

peters, ted. playing god? genetic determinism and human freedom. london: routledge, 1997.

reiss, michael, and straughan, roger. improving nature? the science and ethics of genetic engineering. cambridge, uk: cambridge university press, 1996.

rolston, holmes iii. genes, genesis, and god: values and their origins in natural and human history. cambridge, uk: cambridge university press, 1999.

ruse, michael. can a darwinian be a christian? the relationship between science and religion. cambridge, uk: cambridge university press, 2001.

worster, donald. nature's economy: a history of ecological ideas. new york: cambridge university press, 1977.

celia deane-drummond

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Life Sciences." Encyclopedia of Science and Religion. . 15 Dec. 2017 <>.

"Life Sciences." Encyclopedia of Science and Religion. . (December 15, 2017).

"Life Sciences." Encyclopedia of Science and Religion. . Retrieved December 15, 2017 from

life sciences

life sci·enc·es • plural n. the sciences concerned with the study of living organisms, including biology, botany, zoology, microbiology, physiology, biochemistry, and related subjects. Often contrasted with physical sciences. DERIVATIVES: life sci·en·tist n.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"life sciences." The Oxford Pocket Dictionary of Current English. . 15 Dec. 2017 <>.

"life sciences." The Oxford Pocket Dictionary of Current English. . (December 15, 2017).

"life sciences." The Oxford Pocket Dictionary of Current English. . Retrieved December 15, 2017 from