Japanese Perspectives

views updated

JAPANESE PERSPECTIVES

In the early years of the twenty-first century ethical concerns related to scientific and technological developments are receiving a great deal of attention in Japan. A focus on globalization has resulted in a renewed concern with the impact of traditional values on technology, as well as in the adaptation of some western perspectives on ethical issues. Currently evolving discussions, in areas ranging from bioethics to nuclear power, make an excellent case study of how a society's ethical considerations both arise out of a given historical context and interact with a wider global context.

Japan is an ancient nation of 127 million people (2003) living mostly on four mountainous islands in the Northern Pacific off the coast of Asia. Records of inhabitance date back to the early centuries of the Common Era. After a long history of isolation followed by tentative openings, during the period of the Tokugawa Shogunate (1603–1868), Japan almost totally closed itself off from the outside world and consequently also from the influences of Western scientific and technological developments. It even successfully abolished the production and use of firearms, thus becoming one of the few examples where a more advanced technology, after having been widely utilized, was suppressed for an extended period of time. Toward the end of the Shogunate, however, it became clear that Japan would have to adopt Western technology in order to survive as an independent state, as was made evident in 1853 by the arrival of Commodore Matthew C. Perry in his black ships with their superior firepower, demanding an opening of trade. The subsequent Meiji Restoration of the emperor in 1868 accelerated a period of change in Japan, during which Western science and technology were rapidly integrated into an agrarian social system in flux. The slogan for the process of adoption was wakon yMsai or Japanese soul with Western technology, indicating an unwillingness to identify modernization with a transformation of the national cultural characteristics.

Historical Evolution of Ethical Issues

An initial movement to bring in experts from throughout the world and send students abroad, while adapting foreign learning to the Japanese cultural context and improving on it, set the pattern for much of the twentieth century. Japan became known as a society that emphasized incremental improvements on revolutionary innovations developed elsewhere. This reflected a societal objective of catching up to European and North American powers in economic and military strength, where the national government assumed the primary leadership role in building up the infrastructure necessary for scientific and technological growth. In this process, Japan became the first country to establish a college of engineering within a university system. As early as the 1870s, the Imperial University (later the University of Tokyo) established a Faculty of Engineering with its own service departments in the sciences. Ever since, the university system has produced many more engineering graduates than ones in the sciences. Under this system relatively less attention was given to basic or pure scientific research; the dominant focus was on applied science and technology for industrial development. As a result, the demarcation between science and technology has not been as evident in Japan as in the Western tradition. Neither has been the close cooperation between corporations and universities typical in the United States.

To understand how the historical evolution of science and engineering is connected to ethics in Japan, it is necessary to gain some insight into Japanese social values, which are influenced both by the general Asian traditions of Buddhism, Daoism, and Confucianism, and by the native ShintM religious perspective. As a unified value system, these social values have resulted in an emphasis on the group over the individual; a focus on family and clan, with priority being given to loyalty and hierarchy; sacredness associated with the elements of nature, and an integrated perspective on body and spirit. In addition, there are still religious connotations associated with the emperor and the land of Japan itself as having divine origins. All of these values, in turn, have influenced Japanese conceptions of ethics, which in general are dominated by relativistic and situational group norms.

During the late-nineteenth and early-twentieth centuries, a large percentage of engineers and scientists came from the samurai class. Thus, as Nitobe Inazo pointed out in his influential Bushido: The Soul of Japan (1900), the heritage of science and engineering ethics in Meiji Japan was associated with Japanese ideals of chivalry. However, perhaps as a result of Japan's ethnic and linguistic homogeneity, a written code of ethics for engineers and scientists was not introduced until 1938, when the Japan Society of Civil Engineers adopted the first one. This code, based upon its U.S. counterpart, was a pioneering work largely authored by Aoyama Akira (1878–1963), a leading engineer of the time, who had worked on the construction of the Panama Canal and had a well-developed international perspective, reflected in his humanitarian philosophy and his Christian beliefs. As Imperial Japan was hastening toward World War II, however, his work must be considered to have been well ahead of its time.

Ethical Concerns in the Postwar Recovery Period

In the postwar recovery period, during which first priority was given to materialistic goals, Japan experienced a tremendous turmoil in thought as Western idealism and democracy rapidly replaced prewar ultranationalistic values and the associated ethical framework. These were denied in large part because they were identified in the minds of the people with the political stand of Imperial Japan. In particular, the memories of Hiroshima and Nagasaki had a critical impact on how Japanese scientists, especially physicists, viewed their role in society. The Science Council of Japan (SCJ) declared at its first assembly after its establishment in 1949 that the aim of scientific research should be to contribute to the welfare of humankind and to world peace. When the government officially made budgetary arrangements for utilizing nuclear power in 1954, the SCJ demanded that research on and the use of nuclear energy be conducted on the principles of "openness, democracy, and independence." The first Japanese Nobel Laureate, the theoretical physicist Yukawa Hideki (1907–1981), was one of the signatories of the Russell-Einstein Manifesto (1955). After recommending to the government in 1962 and 1976 that it establish the Basic Act on Scientific Research, the SCJ proposed a Charter for Scientific Researchers, reemphasizing basic values such as human welfare, world peace, freedom of scientific research, safety, and internationalism. SCJ efforts to emphasize the social responsibility of scientists were important historically; however, because most members of the organization are senior scholars and researchers, its statements appear to have had limited influence on young scientists and engineers with career ambitions.

Changes in engineering ethics had a similarly limited impact. Modeled after the American system of consulting and professional engineers, and the British system of chartered engineers, the Japanese version of engineering licensing was legally institutionalized in 1957, and the Institution of Professional Engineers, Japan (IPEJ), formed in 1951. IPEJ adopted a code of ethics in 1961. However because of the limited number of licensed engineers (approximately 40,000 since 1958) and the general lack of interest in engineering ethics, this code was not widely promoted. In addition, the concept of engineering as a profession is unequivocally absent in Japan, most likely because the development of engineering was dominated by the state and industry, rather than by public forces. The Japanese employment system has also encouraged engineers to develop identities with their company rather than as part of a professional association.

Aside from such attempts to formalize ethical concerns, the postwar period could well be characterized as an ethical vacuum, in which traditional values dominated, but without an underlying ethical framework. The situation in bioethics perhaps best illustrates the difference between traditional and Western perspectives. The medical establishment is quite paternalistic in its approach. Informed consent has been recognized, but is not well institutionalized, with physicians sometimes using patients in experimental procedures without their knowledge. Truth-telling and patient autonomy are only slowly being recognized as significant values. Traditionally concealing the truth from patients, and more rarely from their families, has been seen as protecting the health of even dying patients. The assumption has been that physicians are authority figures, so that explanations to patients are not necessary. Only recently, for example, have physicians been held to account for practicing involuntary euthanasia.

On the societal level the impact of Japanese values has also been influential in the medical field. Despite legalization, religious and social norms have prevented any significant use of organ transplants. Conceptions of human nature have resulted in a hesitancy to adopt Western standards of brain death, further inhibiting both transplants and a widespread death with dignity movement. At the same time, abortion is commonly practiced in Japan without social stigma, both because the woman and fetus are considered to be one entity and because contraceptive pills are not generally available.

However any assessment of the state of scientific and engineering ethics in Japan must recognize that the society is entering a period of structural change, which has already begun to influence discussion about a variety of ethical issues. During the entire postwar period developments in technology were considered issues of national security and survival. National interests took priority over popular consumer desires. In order to spur economic development, the government took a central role in technological planning activities and in guiding research. Major corporations adopted systems of lifetime employment and seniority-based pay to foster workforce loyalty. Japan quickly became an economic juggernaut based on the total commitment of its workers and on the innovative use of management and production strategies such as quality circles and just-in-time supply procurement.

A New Emphasis on Ethics for the Twenty-First Century

Then came the decade-long recession of the 1990s, resulting in fundamental changes in corporate life and public attitudes. Japanese increasingly accepted the need for more global approaches, a move away from governmental direction, and more attention being given to the public. The impacts of these changes are evident in a variety of new discussions of ethical issues. In the area of bioethics, for example, there is a burgeoning patient rights movement and an increased emphasis on physician accountability.

Many of the cutting edge technological innovations in Japan have come from corporations rather than out of the university system. Consequently any changes in the corporate environment tend to influence discussions of research ethics. For example, notions of intellectual property are undergoing testing. Traditionally researchers received little monetary reward. However as Japan is moving toward more mobility in its professional class, with the weakening of lifetime employment and seniority-based pay, researchers are increasingly seeking a greater ownership stake in their work. University researchers are likewise being granted greater independence with a shift away from government direction of the university system as a whole. University science departments, operating on the chair system, in the past have been awarded a set amount of research funding rather than operating on a competitive grant basis. With change to a more merit based system, it can be expected that research priorities will be different and that increased coordination between university and corporate researchers will be established, in turn resulting in new discussions about ethical issues.

Another area that is undergoing change is concern about the natural environment. Although respect for nature is a dominant factor in the Japanese value system, during the period of economic expansion environmental preservation was considered secondary to economic growth. Since the late-twentieth century, especially after the signing of the Kyoto protocol in Japan, a renewed concern with the environment has been in evidence. Japanese are moving away from an ethics that emphasizes disposal to a recycling culture. There is also increased recognition of the global nature of environmental issues such as the heavy use of wood products in Japan and the lack of suitable disposal opportunities for refuse.

The 1990s was also a decade of awakening for engineering ethics. Various incidents and accidents having to do with engineering practice occurred, including a major sodium leak at the Monju fast-breeder reactor in 1995, the sarin gas attack in the Tokyo subway system that same year (by members of a religious cult who were educated as engineers and scientists), and the disastrous nuclear criticality accident in Tokaimura in 1999. These prompted increased interest in engineering ethics and major engineering societies established codes of ethics one after the other, starting with the Information Processing Society of Japan in 1996. The Japan Society of Civil Engineers revised its code honoring the spirit of Aoyama's contribution in 1999. By 2003 most of the major engineering societies had adopted codes, which in general include fundamental values such as giving first priority to the safety of the public, in common with their North American counterparts.

The process of globalization has had great impact on engineering ethics. In 1999 the Japan Accreditation Board for Engineering Education (JABEE) was established to harmonize engineering education with international standards, to enable participation in mutual recognition of engineering qualifications. This required ethics education as one of its components and set in motion a flurry of activity, ranging from short courses on the subject, to conferences, to modification of engineering curricula to include required courses on engineering ethics. All of this activity is financially well supported by the government, so that large numbers of people are involved in what is essentially a new area of inquiry in Japan. In this work there is a twofold emphasis on application to specific ethical problems and on theoretical philosophical analysis. Given the scientific-technological heritage of Japan, the emphasis in the discussions tends to be broader than it has been in the United States, leaning more toward a science, technology, and society (STS) perspective than one that emphasizes strictly professional responsibilities. This is in part because Japan has an existing tradition of STS studies and lacks a tradition of professional identification. The JABEE accreditation criteria therefore require the study of engineering ethics conceptualized as "understanding of the effects and impact of technology on society and nature, and of engineers' social responsibilities," as opposed to the U.S. standards that emphasize "professional and ethical responsibility" and put these in a separate category from the need to "understand the impact of engineering solutions in a global and societal context."

Given the attention to engineering ethics present in Japan, it can be expected that the discussion will increasingly impact the overall consideration of ethical concerns in Japanese society and its scientific community. The population as a whole appears to be seeking new standards of accountability in many areas of life, including business, government, and universities, and in relation to the environment. These discussions will be influenced by both local traditions and a more global outlook.

HEINZ C. LUEGENBIEHL
JUN FUDANO

SEE ALSO Buddhist Perspectives;Engineering Ethics.

BIBLIOGRAPHY

Fudano, Jun; Heinz C. Luegenbiehl; et al. (2004). Gijyutusha Rinri [Introduction to engineering ethics]. Tokyo: Society for the Promotion of the University of the Air. Textbook written for the first Japanese television course on engineering ethics, which is offered by the National Broadcasting University. Codes of ethics are given special attention.

Low, Morris Fraser; Shigeru Nakayama; and Hitoshi Yoshioka. (1999). Science, Technology and Society in Contemporary Japan. Cambridge and New York: Cambridge University Press. Discusses a variety of technological issues from the perspective of various stakeholders.

Morishima Michio. (1982). Why Has Japan 'Succeeded'?: Western Technology and the Japanese Ethos. Cambridge, UK, and New York: Cambridge University Press. Relates the Japanese value system to contemporary emphases in technological development.

Morris-Suzuki, Tessa. (1994). The Technological Transformation of Japan: From the Seventeenth to the Twenty-First Century. Cambridge, UK, and New York: Cambridge University Press, 1994. Provides an introduction to the evolution of technology in the Japanese societal context.

Nitobe, Inazo. (1900). Bushido, the Soul of Japan. Philadelphia: Leeds and Biddle Company. The major exposition of the code of ethics of the Samurai class. It was the foundation of much of the ethical perspective of scientists and engineers, most of whom came from that class.

About this article

Japanese Perspectives

Updated About encyclopedia.com content Print Article