# Absolute Value

Absolute value is an operation in mathematics, written as bars on either side of the expression. For example, the absolute value of 1 is written as |1|.

Absolute value can be thought of in three ways. First, the absolute value of any number is defined as the positive of that number. For example, |8| = 8 and |8| = 8. Second, one absolute value equation can yield two solutions. For example, if we solve the equation |x | = 2, not only does x = 2 but also x = 2 because |2| = 2 and |2| = 2.

Third, absolute value is defined as the distance, without regard to direction, that any number is from 0 on the real number line. Consider a formula for the distance on the real number line as |k 0|, in which k is any real number. Then, for example, the distance that 11 is from 0 would be 11 (because |11 0| = 11). Likewise, the absolute value of 11 is equal to 11. The distance for 11 will also equal 11 (because |11 0| = |11| = 11), and the absolute value of 11 is 11.

Thus, the absolute value of any real number is equal to the absolute value of its distance from 0 on the number line. Furthermore, if the absolute value is not used in the above formula |k 0|, the result for any negative number will be a negative distance. Absolute value helps improve formulas in order to obtain realistic solutions.

Michael Ota

Pick a style below, and copy the text for your bibliography.

• MLA
• Chicago
• APA

"Absolute Value." Mathematics. . Encyclopedia.com. 25 May. 2017 <http://www.encyclopedia.com>.

"Absolute Value." Mathematics. . Encyclopedia.com. (May 25, 2017). http://www.encyclopedia.com/education/news-wires-white-papers-and-books/absolute-value

"Absolute Value." Mathematics. . Retrieved May 25, 2017 from Encyclopedia.com: http://www.encyclopedia.com/education/news-wires-white-papers-and-books/absolute-value

## absolute value

absolute value, magnitude of a number or other mathematical expression disregarding its sign; thus, the absolute value is positive, whether the original expression is positive or negative. In symbols, if |a| denotes the absolute value of a number a, then |a| = a for a > 0 and |a| = -a for a < 0. For example, |7|= 7 since 7 > 0 and |-7| = -(-7), or |-7| = 7, since -7 < 0.

Pick a style below, and copy the text for your bibliography.

• MLA
• Chicago
• APA

"absolute value." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. 25 May. 2017 <http://www.encyclopedia.com>.

"absolute value." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. (May 25, 2017). http://www.encyclopedia.com/reference/encyclopedias-almanacs-transcripts-and-maps/absolute-value

"absolute value." The Columbia Encyclopedia, 6th ed.. . Retrieved May 25, 2017 from Encyclopedia.com: http://www.encyclopedia.com/reference/encyclopedias-almanacs-transcripts-and-maps/absolute-value

## absolute value

absolute value The magnitude of a number, regardless of its sign (positive or negative). For example, 25 is the absolute value of 25 and –25. Most spreadsheet programs include a function that returns the absolute value of a number.