Skip to main content
Select Source:

X-ray astronomy

X-ray astronomy, study of celestial objects by means of the X rays they emit, in the wavelength range from 0.01 to 10 nanometers. X-ray astronomy dates to 1949 with the discovery that the sun emits X rays. Since X rays could not be observed from ground-based telescopes, V-2 rockets launched from White Sands, N.Mex., occasionally carried telescopes to study solar X-ray emissions. In 1962 a group led by R. Giacconi launched a small rocket from White Sands to search for celestial sources of X rays with instruments similar to Geiger counters. During the 5-min flight the experiment discovered an X-ray source now called Scorpius X-1, a close binary star in which one star expels gas onto a very dense neighbor, which may be a white dwarf, a neutron star, or a black hole. This mission also found that the earth is bathed in diffuse X rays coming from all directions. Soon afterward X-ray emissions were found coming from the Crab Nebula and the radio galaxies (galaxies whose radio emissions constitute an extraordinarily large amount of their total energy output) Centaurus A and Virgo A. Other types of galaxies, particularly Seyfert galaxies (galaxies with extremely bright cores that are strong emitters of radio waves, X rays, and gamma rays), also emit X rays. The center of our galaxy is a strong X-ray source, which is an indicator of the violent activity taking place there.

In 1970 the Uhuru satellite, one of NASA's small astronomy satellites, began to look specifically for X-ray sources. Uhuru used detectors filled with argon, in which incoming X radiation gives off electrons in amounts proportional to its strength. Uhuru mapped more than 400 sources and discovered a series of X-ray binary stars in which ordinary stars orbit neutron stars that emit X rays. One of these sources, Cygnus X-1, is an object with ten times the mass of the sun. Too massive to be a neutron star, it is possibly a black hole.

Much of the data in X-ray astronomy is now gathered by orbiting satellites. In addition to the United States, Germany and Japan are among the countries having X-ray satellites. In the 1970s the Skylab space station and Orbiting Solar Observatory satellites continued the study, as did the Solar Maximum Mission the following decade. A series of High Energy Astrophysical Observatories (HEAO) were launched during the late 1970s to study X rays, cosmic rays, and gamma rays. HEAO-1, launched in 1977, increased the number of known X-ray sources from 350 to 1,500. HEAO-2—also known as the Einstein Observatory—carried the largest X-ray telescope ever built. It detected several thousand new X-ray sources in our galaxy and beyond, discovered that cataclysmic variable stars in our own galaxy emit X rays when they are in outburst, achieved the first unambiguous detection of X rays from ordinary stars other than the sun, and obtained the first X-ray images of supernova remnants, pulsars, and star clusters. As a result, supernova remnants mapped in X-ray wavelengths can be compared with visible light and radio images. In an example of cooperation between amateur and professional astronomers, the Einstein Observatory was turned toward SS Cygni (see variable star) whenever amateur astronomers with backyard telescopes reported it in outburst. The few days' duration of these outbursts allowed enough time to change the satellite's observing schedule so that it could examine the star, and it discovered the source of the star's X-ray emissions.

During the 1980s the European, Russian, and Japanese space agencies continued to launch successful X-ray astronomy missions, such as the European X-ray Observatory Satellite (EXOSAT), Granat, the Kvant module (of the Mirspace station), Tenma, and Ginga. These missions were more modest in scale than the HEAO program in the 1970s and were directed toward in-depth studies of known phenomena.

In 1990, ROSAT [Roentgen Satellite], a joint project of Germany, the United States, and Great Britain, was launched. Operational until 1999, it was instrumental in the discovery of X-ray emissions from comets and conducted an all-sky survey in the X-ray region of the spectrum. Five other satellites launched in the 1990s are still operational. ALEXIS [Array of Low Energy X-ray Imaging Sensors] was launched in 1993; a minisatellite containing six coffee-can-sized wide-angle, ultrasoft-X-ray telescopes, it provided the data for a unique sky map for studying celestial flashes of soft X rays. Also launched in 1993, the Advanced Satellite for Cosmology and Astrophysics is a joint Japanese-American project; containing four X-ray telescopes, its primary purpose is the X-ray spectroscopy of such astrophysical entities as quasars and cosmic background X radiation. In 1995, NASA orbited the Rossi X-ray Timing Explorer (RXTE) to study the variations in the emission of such X-ray sources as black-hole candidates, active galactic nuclei, white dwarf stars, neutron stars, and other high-energy sources. The RXTE played a key role in the discovery in 1996 of a "pulsing burster" located near the center of the Milky Way. Unlike other X-ray sources, this one burst, oscillated, and flickered simultaneously, with bursts lasting from 6 to 100 seconds. Before it burned out, the unexplained object was the brightest source of X rays and gamma rays in the sky, radiating more energy in 10 seconds than the sun does in 24 hours. BeppoSAX, a joint Italian-Dutch satellite, was launched in 1996. When on Dec. 14, 1997, for 1 or 2 seconds the most energetic burst of gamma radiation ever detected was recorded by the Compton Gamma Ray Observatory,BeppoSAX recorded the X-ray afterglow of the burst, thereby providing a relatively accurate location for the source. The Chandra X-ray Observatory was deployed from a shuttle and boosted into a high earth orbit in 1999; it focuses on such objects as black holes, quasars, and high-temperature gases throughout the X-ray portion of the electromagnetic spectrum. Also launched in 1999 was X-ray Multimirror Mission, an ESA satellite that carries an optical-ultraviolet telescope together with three parallel mounted X-ray telescopes, allowing it to simultaneously observe phenomena in two regions of the spectrum.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"X-ray astronomy." The Columbia Encyclopedia, 6th ed.. . 29 Jun. 2017 <>.

"X-ray astronomy." The Columbia Encyclopedia, 6th ed.. . (June 29, 2017).

"X-ray astronomy." The Columbia Encyclopedia, 6th ed.. . Retrieved June 29, 2017 from

X-ray Astronomy

X-ray astronomy

Stars and other celestial objects radiate energy in many wavelengths other than visible light, which is only one small part of the electromagnetic spectrum. At the low end (with wavelengths longer than visible light) are low-energy infrared radiation and radio waves. At the high end of the spectrum (wavelengths shorter than visible light) are high-energy ultraviolet radiation, X rays, and gamma rays.

X-ray astronomy is a relatively new scientific field focusing on celestial objects that emit X rays. Such objects include stars, galaxies, quasars, pulsars, and black holes.

Earth's atmosphere filters out most X rays. This is fortunate for humans and other life on Earth since a large dose of X rays would be deadly. On the other hand, this fact makes it difficult for scientists to observe the X-ray sky. Radiation from the shortest-wavelength end of the X-ray range, called hard X rays, can be detected at high altitudes. The only way to view longer X rays, called soft X rays, is through special telescopes placed on artificial satellites orbiting outside Earth's atmosphere.

First interstellar X rays detected

In 1962, an X-ray telescope was launched into space by the National Aeronautics and Space Administration (NASA) aboard an Aerobee rocket. The rocket contained an X-ray telescope devised by physicist Ricardo Giacconi (1931 ) and his colleagues from a company called American Science and Engineering, Inc. (ASEI). During its six-minute flight, the telescope detected the first X rays from interstellar space, coming particularly from the constellation Scorpius.

Later flights detected X rays from the Crab Nebula (where a pulsar was later discovered) and from the constellation Cygnus. X rays in this latter site are believed to be coming from a black hole. By the late 1960s, astronomers had become convinced that while some galaxies are sources of strong X rays, all galaxies (including our own Milky Way) emit weak X rays.

Words to Know

Black holes: Remains of a massive star that has burned out its nuclear fuel and collapsed under tremendous gravitational force into a single point of infinite mass and gravity.

Electromagnetic radiation: Radiation that transmits energy through the interaction of electricity and magnetism.

Electromagnetic spectrum: The complete array of electromagnetic radiation, including radio waves (at the longest-wavelength end), microwaves, infrared radiation, visible light, ultraviolet radiation, X rays, and gamma rays (at the shortest-wavelength end).

Gamma rays: Short-wavelength, high-energy radiation formed either by the decay of radioactive elements or by nuclear reactions.

Infrared radiation: Electromagnetic radiation of a wavelength shorter than radio waves but longer than visible light that takes the form of heat.

Pulsars: Rapidly spinning, blinking neutron stars.

Quasars: Extremely bright, starlike sources of radio waves that are the oldest known objects in the universe.

Radiation: Energy transmitted in the form of subatomic particles or waves.

Radio waves: Longest form of electromagnetic radiation, measuring up to 6 miles (9.7 kilometers) from peak to peak.

Ultraviolet radiation: Electromagnetic radiation of a wavelength just shorter than the violet (shortest wavelength) end of the visible light spectrum.

Wavelength: The distance between two troughs or two peaks in any wave.

X rays: Electromagnetic radiation of a wavelength just shorter than ultraviolet radiation but longer than gamma rays that can penetrate solids and produce an electrical charge in gases.

In 1970, NASA launched Uhuru, the first satellite designed specifically for X-ray research. It produced an extensive map of the X-ray sky. In 1977, the first of three High Energy Astrophysical Observatories (HEAO) was launched. During its year and a half of operation, it provided constant monitoring of X-ray sources, such as individual stars, entire galaxies, and pulsars. The second HEAO, known as the Einstein Observatory, operated from November 1978 to April 1981. It contained a high resolution X-ray telescope that discovered that X rays are coming from nearly every star.

In July 1999, NASA launched the Chandra X-ray Observatory (CXO), named after the Nobel Prize-winning, Indian-born American astrophysicist Subrahmanyan Chandrasekhar (19101995). About one billion times more powerful than the first X-ray telescope, the CXO has a resolving power equal to the ability to read the letters of a stop sign at a distance of 12 miles (19 kilometers). This will allow it to detect sources more than twenty times fainter than any previous X-ray telescope. The CXO orbits at an altitude 200 times higher than the Hubble Space Telescope. During each orbit around Earth, it travels one-third of the way to the Moon.

The purpose of the CXO is to obtain X-images and spectra of violent, high-temperature celestial events and objects to help astronomers better understand the structure and evolution of the universe. It will observe galaxies, black holes, quasars, and supernovae (among other objects) billions of light-years in the distance, giving astronomers a glimpse of regions of the universe as they existed eons ago. In early 2001, the

CXO found the most distant X-ray cluster of galaxies astronomers have ever observed, located about 10 billion light-years away from Earth. Less than a month later, it detected an X-ray quasar 12 billion light-years away. These are both important discoveries that may help astronomers understand how the universe evolved.

[See also Telescope; X rays ]

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"X-ray Astronomy." UXL Encyclopedia of Science. . 29 Jun. 2017 <>.

"X-ray Astronomy." UXL Encyclopedia of Science. . (June 29, 2017).

"X-ray Astronomy." UXL Encyclopedia of Science. . Retrieved June 29, 2017 from

X-ray astronomy

X-ray astronomy See astronomy

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"X-ray astronomy." World Encyclopedia. . 29 Jun. 2017 <>.

"X-ray astronomy." World Encyclopedia. . (June 29, 2017).

"X-ray astronomy." World Encyclopedia. . Retrieved June 29, 2017 from