James Franck

views updated May 23 2018

James Franck

James Franck (1882-1964) studied the effects of an electron upon an atom. Along with Gustave Hertz, he was awarded the Nobel Prize in physics in 1925.

James Franck was a physicist whose experimental work with atoms and electrons proved Niels Bohr's theory that atoms are quantized—that they transmit and absorb energy in discrete quantities or packages. Along with collaborator Gustav Hertz, he was awarded the 1925 Nobel Prize in physics. Franck was also known for his outspoken opposition to the use of the atomic bomb, which he helped develop during World War II.

Franck was born in Hamburg, Germany, on August 26, 1882, to Jacob Franck, a German Jewish banker, and Rebecka Nachum Drucker. Although Jacob Franck was deeply religious—he observed Jewish holidays with fasting and chanting—his spiritual devotion did not, on the whole, pass on to James, who would later declare science and nature as his true love and religion. He attended school at the Wilhelm Gymnasium in Hamburg before enrolling at the University of Heidelberg. Franck's father wanted him to study law and economics with the hope that his son would take over the family business. Out of a sense of duty, Franck complied, but after attending law lectures for a short time, he determined to follow his own path and enrolled in the faculty of chemistry.

Heidelberg was where Franck met Max Born, the German physicist with whom he formed his closest friendship. After two terms studying chemistry, Franck enrolled in the doctoral program at the University of Berlin. Under the influence of its physics professor, Emil Warburg, he became interested in physics and switched fields. He began a study to determine the mobility of ions using a method invented by Cambridge physicist Ernest Rutherford.

After graduating with a D.Phil. in 1906, Franck continued to pursue the same lines of research, exploring the forces between electrons and atoms at the physics faculty of the University of Frankfurt-on-Main. He returned to Berlin in 1908 to become an assistant to Professor Heinrich Rubens. There, Franck began collaborating with the German physicist Gustav Hertz on a series of experiments that would provide direct proof of Bohr's theoretical model of atomic structure, demonstrate the quantized energy transfer from kinetic, or moving, energy to light energy, and establish both of their reputations.

Bohr had postulated that an atom's nucleus, or core, is surrounded by "orbits" of negatively charged electrons. Bohr theorized that these orbits revolve around the nucleus at set distances known as shells. The number of electrons and, thus, the number of shells vary according to the type of atom. Atoms ranking high on the periodic table of elements contain more electrons than simple elements such as hydrogen, which has just one proton and one electron. These extra electrons are contained in extra shells, according to a definite pattern. The first shell contains two electrons; the second, eight; the third, eighteen; the fourth; thirty-two; and fifth, fifty, and so on. As soon as the first shell is full, electrons begin to fill up the second shell, then the third, up to the last shell.

In their natural, unexcited state, the electrons try to stay as close to the nucleus as possible, that is, in an inner shell. Bohr suggested that electrons would jump from one shell to another if energy were applied to them. The distance they would jump would depend on the amount of energy supplied; when the energy source were withdrawn, they would fall back to their original position. The energy emitted by electrons falling back in toward the nucleus would be exactly equivalent to that absorbed by them when jumping to an outer shell. Most importantly, atoms receiving energy could not absorb just any amount but only the specific amount they would need to make a leap. Thus, Bohr spoke of the atom as being "quantized."

Franck and Hertz did not set out to prove Bohr's theory. In fact, they were not even familiar with his work at the time they were carrying out their experiments. Rather, they were interested in measuring the energy needed to ionize atoms of mercury. To this end, they bombarded atoms of mercury vapor with electrons moving at controlled speeds. Below a certain speed, the electrons would bounce off the atoms with perfect elasticity, indicating that the electrons did not possess sufficient energy to ionize the mercury atom, that is, to transfer enough energy to the mercury to enable its electrons to jump from one atomic shell into another. Above a certain speed, Franck and Hertz discovered that resonance occurred. At this point, energy was transferred from the electrons to the atoms, causing the mercury gas to glow. They found that energy had been transferred from the electrons to the atoms in discrete amounts. The energy value of the light emitted from the ionized atoms was equivalent to the energy given to them by the electrons. This experiment proved that the quantized energy had changed from the kinetic energy of the moving electrons to the electromagnetic energy given off by the glowing mercury. It also provided direct experimental evidence for Bohr's theory of the quantized atom, a crucial step in the development of twentieth-century physics.

This experiment was also significant because it led to the realization that the light spectrum of an atom holds the key to its atomic structure. The discontinuous bands of light in an atomic spectrum, each representing a particular energy level, correspond to the range of possible jumps that an excited electron could make as it drops from the outer shells, where the absorption of energy had sent it, back to its original inner shell.

Franck's work was unexpectedly interrupted with the outbreak of the First World War. He signed up and became an officer. He served through 1918, working with a group of physicists who prepared and later directed chemical warfare. Franck received the Iron Cross for his valor; he also received a serious leg injury, which almost claimed his life. Returning to academia in 1918, he was named as the head of the physics division at the Kaiser Wilhelm Institute for Physical Chemistry, later renamed the Max Planck Institute. There, Franck pursued his work on electron impact measurements. It was also at the institute that he met Niels Bohr, with whom he developed a lasting friendship. Franck always regarded Bohr as a physicist second to none and consulted him regularly. "I never felt… such hero worship as [I did] to[ward] Bohr," he said in an interview excerpted in Redirecting Science: Niels Bohr, Philanthropy, and the Rise of Nuclear Physics.

In 1920, with the influence of Born, Franck was appointed professor and director of the Second Physical Institute of the University of Göttingen. The friendship between Franck and Born blossomed into a close working relationship, with Franck the experimenter complementing Born the theorist. During their twelve years at Göttingen, the pair used one another as sounding boards for their ideas, discoveries, and publications, although they collaborated on only a few joint papers. The only contention between them was Franck's habit of holding frequent consultations with Bohr, a practice that tended to slow down their work. More than sixty letters between Franck and Born have survived from the 1920s.

In the spring of 1921, at Bohr's invitation, Franck paid a visit to Copenhagen in time for the March opening of Bohr's Institute of Theoretical Physics. By now, his reputation preceded him and his visit made front page news in Denmark. His meeting with the Swedish physicist Oskar Klein and Norwegian Svein Rosseland convinced him to continue his experimental work on Bohr's theories.

Back at the University of Göttingen a couple of months later, Franck concentrated on building a research facility of international repute. He afforded his students considerable academic freedom. Scientific discussions between teacher and pupils would occur as often during a walk or bicycle ride as in the laboratory. The standards for admission to his school were extremely high but once accepted, a student was assured of his unwavering support and friendship, both professionally and personally.

Franck continued to investigate collisions between atoms, the formation and disassociation of molecules, fluorescence, and chemical processes. In 1925, building on three previously unconnected theories, he published a paper dealing with the elementary processes of photochemical reactions. In it he set out the connection between electron transition and the motion of nuclei, and described a general rule for vibrational energy distribution. This rule was later expressed by the American physicist Edward U. Condon in terms of quantum mechanics (a mathematical interpretation of particle structures and interactions) and became known as the Franck-Condon principle, which is applied to a large number of chemical and spectroscopic phenomena. In 1926 Franck published a book summarizing his work in this area.

Also in 1926, Franck traveled to Sweden to accept the 1925 Nobel Prize in physics, awarded jointly to him and Hertz for their experiments proving Bohr's atomic theory. He returned to Göttingen to begin his next project, the study of photosynthesis, but had no sooner begun his experiments when Adolf Hitler's arrival on the German political stage changed his life.

When Hitler's anti-Semitic Nazi regime took control of Germany, a new law was declared that barred Jews from the civil service, excepting those who had served in the First World War. Although Franck's position was secure, he could not in good conscience continue to work for a regime dedicated to racism, so on April 17, 1933, he sent letters to the minister of education and to the rector of the university, announcing his resignation and decrying the government's discriminatory policy. Hoping to remain in Germany, Franck searched for another position. Two possibilities presented themselves, one being the chair of physics at the University of Berlin, which would shortly be open. Though it was a position Franck would have coveted under other circumstances, it would have meant working for the government. The other possibility was the directorship of the Kaiser Wilhelm Institute for Physical Chemistry, a position that retiring director Fritz Haber hoped Franck would accept. Internal problems in the institute, however, prevented Franck from assuming this post as well. Franck decided to accept a visiting lectureship at the Johns Hopkins University in America. After the three month period of that position he returned to Göttingen to contemplate his uncertain future. Tentative offers were made from universities in the United States, but they did not promise the permanency Franck was seeking. He decided to accept an offer from Bohr for a year's work at his Institute of Theoretical Physics.

Franck arrived in Copenhagen in April 1934, and, with his assistant Hilde Levi, set to studying the fluorescence of green plants, an extension of his previous work studying energy exchanges in complex molecular systems. Under Bohr's direction, he also began administering experimental nuclear research at the Institute. He was frustrated by poor facilities and slow coworkers and, as stated in Redirecting Science, wrote of this period: "My nuclear physics exhausts itself at present in work which is just about to be completed when someone else publishes it in Nature." Working with a master theorist such as Bohr also proved difficult for Franck. "Bohr's genius was so superior. And one cannot help that one would get so strong inferiority complexes in the presence of such a genius that one becomes sterile," he later said in an interview quoted in Redirecting Science. After being used to having his own laboratory and students, it was hard for Franck to get used to working in Bohr's shadow.

The combination of numerous frustrations spurred Franck to accept an offer to settle in the United States. In late 1935, he became a professor at Johns Hopkins University, where he spent three years before moving to the University of Chicago to fill its chair of physical chemistry. With the help of the Samuel Fels Fund, a laboratory dedicated to research into photosynthesis was built, which Franck directed until his retirement in 1949, though he continued to work there for many years subsequently. He became an American citizen in the early 1940s.

When the Second World War broke out, Franck played a leading role in the Manhattan Project, the American government-sponsored atomic bomb project. Like the other German scientists on the team, he was driven by a desire to beat Hitler to the production of a nuclear weapon. But he firmly believed that the bomb should be used as a mode of deterrence, not as a means of aggression. When the U.S. finally developed the bomb and subsequently deployed it against the Japanese, Franck was a harsh critic.

In 1942, a crisis struck in Franck's private life with the death of his wife, Ingrid Josephson, who had been sick for many years. He coped with the loss by immersing himself in his work. He chaired a committee of scientists charged with exploring the social and political implications of detonating an atom bomb. That committee's findings, titled the Franck Report, was submitted to the U.S. Secretary of War, Henry Stimson, in 1945, and warned the United States Government against the use of the bomb as a military weapon. The report also speculated on the dangers of embarking upon an arms race and also urged the U.S. to restrict nuclear testing to areas where human life would not be endangered. The Franck Report has been seen as a testament to Franck's integrity, conviction, and sense of scientific responsibility.

With the end of the war, Franck returned to his post at the University of Chicago where he continued his work with photosynthesis. He was particularly curious as to how plants are able to transform visible light into a form of energy that they use for sustenance and growth. He began experiments on the emanation of electromagnetic radiation of chlorophyll, a key ingredient in the photosynthesis process. Happy to be back at work, Franck experienced joy in his personal life as well. In 1946, he married Hertha Sponer, a professor of physics at Duke University in North Carolina, whom Franck knew from Göttingen and Berlin. They had two daughters, Dagmar and Elizabeth.

Franck was honored with numerous awards during his long career. In addition to the Nobel Prize, he was awarded the highest honor of the German Physical Society, the Max Planck Medal in 1953. Two years later, he received the Rumford Medal of the American Academy of Arts and Sciences. He became a foreign member of the Royal Society of London in 1964 and a member of the U.S. National Academy of Sciences.

During a visit in 1964 to Göttingen, the city where he had spent his most productive years and which had made him an honorary citizen in 1953, Franck died suddenly on May 21. He was eighty-three. He was remembered by his colleagues as a brilliant experimentalist, a dedicated scientist, and a kind and generous man.

Further Reading

Aaserud, Finn, Redirecting Science: Niels Bohr, Philanthropy and the Rise of Nuclear Physics, Cambridge University Press, 1990.

Biographical Memoirs of the Royal Society, Volume 11, Royal Society (London), 1965, pp. 53-74.

Born, Max, My Life: Recollections of a Nobel Laureate, Scribner's, 1975.

Cline, Barbara Lovett, Men Who Made a New Physics, University of Chicago Press, 1987, p. 108.

Levitan, Tina, The Laureates: Jewish Winners of the Nobel Prize, Twayne, 1960, p. 74.

Segre, Emilo, From X-rays to Quarks, W. H. Freeman and Co., 1980, p. 137.

Weber, Robert L., Pioneers of Science: Nobel Prize Winners in Physics, Institute of Physics, 1980, p. 75.

Bulletin of the Atomic Scientists, October, 1964, pp. 16-20.

Correspondence between Franck and Bohr is available on microfilm as part of the Bohr General Correspondence in the Niels Bohr Library of American Physics in New York.

The James Franck Papers, Joseph Regenstein Library, University of Chicago.

Kuhn, Thomas S., six sessions of interviews with Franck, July, 9-14, 1962, housed at the Archive for the History of Quantum Physics, microfilm 35, section 2 (available at the American Philosophical Society, Philadelphia, and the Niels Bohr Library of the American Institute of Physics, New York). □

Franck, James

views updated May 18 2018

Franck, James

(b. Hamburg, Germany, 26 August 1882; d. Göttingen, Germany, 21 May 1964)

physics.

Frank was the son of Jacob Franck, a banker, and Rebecca Franck. His scientific activity extended over about sixty years, from the beginning of the twentieth century, when the foundations of atomic physics and quantum theory were being laid, to a time when these disciplines had reached a high degree of sophistication. Although Franck was primarily a physicist, his work had a profound influence on chemistry and on the branch of biology concerned with the fundamental process by which the energy of sunlight is converted into the forms of energy that maintain life on earth. In all the varied phenomena that he studied one can recognize a unity of approach in his attempt to understand the processes of transfer of energy in atomic systems.

In the two semesters (1901–1902) of his studies at Heidelberg, Franck met Max Born and formed a friendship with him that lasted throughout his life. His serious study and research in physics began in 1902 when he moved to Berlin, at that time the center of physics in Germany. Rubens, Emil Warburg, and Planck (later Drude and Einstein) were professors in Berlin, and their joint colloquium was one of the great formative influences in Franck’s life. He entered Warburg’s laboratory and started work on corona discharges, a topic he soon abandoned in favor of the more fundamental study of ion mobilities. He found that collisions of electrons with noble gas atoms were mainly elastic, without loss of kinetic energy. His younger colleague, Gustav Hertz, joined him in a thorough study of elastic collisions, and this work led to the discovery of quantized transfer of energy in inelastic collisions between electrons and atoms. In their famous experiments, Franck and Hertz1 showed that electrons could impart energy to a mercury atom only if they had a kinetic energy exceeding 4.9 ev., and that exactly this quantum of energy was taken up by the mercury atom, causing it to emit light of the resonance line Å 2537. It was the first direct proof of the quantized nature of the energy transfer and of the connection of the quantum ΔE of energy with the frequency ρ = ΔE/h of the light emitted as the result of the transfer. These experiments are rightly regarded as the first decisive proof of the reality of the quantized energy levels that had just been postulated by Niel’s Bohr. Misled by the observation of ions in their experiments and in those of other workers in the same conditions, Franck and Hertz initially believed ionization to occur simultaneously with emission of resonance radiation, so that hρ was to be regarded as the ionization energy; this was in accordance with current speculations by Stark and others but contradicted Bohr’s theory.

The outbreak of World War I interrupted most scientific work and exchange of ideas. Franck served briefly in the German army but became seriously ill and was sent home to recover. It was probably due to this interruption of scientific activities and contacts in Europe that Franck and Hertz held to their views on ionization as late as 1916. The spurious origin of the ions was proved mainly by work in the United States and was recognized after the war by Franck and Hertz.2 The fundamental importance of their experiments was acknowledged in 1926 by the award of the Nobel Prize to Franck and Hertz.

From 1917 to 1921 Franck was assistant professor and head of a section of the Kaiser Wilhelm Institut fur Physikalische Chemie (later the Max Planck Institut), whose director was Fritz Haber. With a number of co-workers he extended the study of inelastic collisions of electrons with atoms and molecules and measured excitation and ionization potentials. With Knipping and Reiche he introduced the concept of metastable levels, excited states that can lose energy not by radiation but only by collisions. They play an important part in gas discharges and many other phenomena. The postwar years in Berlin marked the beginning of Franck’s friendship with Niels Bohr, for whom he had a profound admiration as a scientist and a warm affection. The obituary of Bohr that Franck wrote not long before his own death3 is a moving testimony to their friendship.

In 1921 Franck accepted the chair of experimental physics and directorship of the Zweite Physikalische Institut in Gottingen, where R. Pohl occupied the other chair as director of the Erste Physikalische Institut, located in the same building. Max Born had just accepted the chair of theoretical physics on the condition that a chair and department be established for Frank. For the next twelve years Franck and Born, linked by close ties of friendship and common interests, formed the nucleus of an active scientific community in Gottingen.

A central theme in the great variety of publications of that period may be described as the study of atoms in collision, and the formation and dissociation of molecules and their vibration and rotation. In two papers4, 5 Born and Franck developed the use of the now familiar potential energy curves for treating two-atom systems, and they introduced the concept of quasi-molecules. Applying these ideas to the transfer of energy from electronic to vibrational motion in molecular spectra, Franck was led to the method of determining the energy of dissociation of molecules by extrapolation of vibrational levels and to the principle which, after its wave-mechanical formulation by Condon, became known as the Franck-Condon principle. It has since provided the key to the understanding of a wide range of phenomena in molecular physics, such as continuous molecular spectra, the intensity distribution in band spectra, predissociation, photodissociation, and pressure broadening of spectral lines.

Problems of energy transfer in collisions had occupied Franck since he started research, and in 1926 his only publication in book form6 appeared; written with P. Jordan, it contains the basic ideas of most of his work to that date.

Political events in Germany in 1933, after Hitler came to power, brought most of the scientific work in Göttingen to an abrupt end. Franck, although Jewish, was initially allowed to continue in office, but new legislation would have forced him to dismiss co-workers and students who were either non-Aryan or politically committed. He refused to accept this, and in April 1933 he resigned his professorship and published a courageous statement of protest against the new laws. Within a few months not only Franck and Born but most of their co-workers had left Germany.

After spending over a year in Copenhagen, Franck immigrated to the United States in 1935 and accepted a professorship at Johns Hopkins University in Baltimore. In 1938 he was appointed professor of physical chemistry at the University of Chicago, where the Samuel Fels Foundation had established a laboratory for photosynthesis; he directed it until his retirement in 1949 and took an active part in it long afterward. At Göttingen and Baltimore, Franck and his colleagues had begun to extend the understanding of excitation and photodissociation from diatomic molecules to liquids and solids and finally to the process of photosynthesis in plants. This work was bound to involve Franck in all the complexities of biochemistry, but it attracted him by its fundamental importance. His contribution to the exciton theory and the photographic process, made jointly with Teller,7 also belongs to this period, but it was to the problem of photosynthesis that most of his remaining work was devoted.

During World War II, he joined the metallurgical project in Chicago, which formed part of the atomic bomb project. After the surrender of Germany, he and many other scientists working on the project became seriously concerned about the consequences of using the new weapon. In a document later released and known as the Franck Report,8 they urged the government to consider the use of the bomb a fateful political decision and not merely a matter of military tactics. After the end of the war, Franck resumed his research at Chicago. His wife Ingrid had died in 1942 after a long illness, and in 1946 he married Hertha Sponer, professor of physics at Duke University.

The work on photosynthesis involved Franck in much controversy. On the experimental side, he rejected the measurements of Warburg as being in conflict with basic thermodynamic principles and in disagreement with the work at other laboratories. On the theoretical side, Franck developed a model that assumed a two-step process in one single chlorophyll molecule and accounted for most of the experimental facts, although some details of his views are still contested. The award of the Rumford Medal of the American Academy of Arts and Sciences in 1955 for his work on photosynthesis showed the increasing recognition of his contribution to this field. It was one of the numerous honors he received in addition to the Nobel Prize and memberships in academies and learned societies, including the Royal Society of London. Honors also came to him after World War II from Germany: he received the Max Planck Medal of the German Physical Society and was made an honorary citizen of Gottingen, where he died while on a tour to Germany of visit old friends.

NOTES

1. J. Franck and G. Hertz, in Verhandlungen der Physiologischen Gesellschaft zu Berlin, 16 (1914), 512.

2. J. Franck and G. Hertz, in Physikalische Zeitschrift, 20 (1919), 132.

3. J. Franck, “Niels Bohr’s Persönlichkeit,” in Naturwissenschaften, 50 (1963), 341.

4. J. Franck and M. Born, in Annalen der Physik, 76 (1925), 225.

5. J. Franck and M. Born, in Zeitschrift fur Physik, 31 (1925), 411.

6. J. Franck and P. Jordan, Anregungen von Qauntensprungen durch Stosse (Berlin, 1926).

7. J. Franck and E. Teller, in Journal of Chemical Physics, 6 (1938), 861.

8. Franck Report, Bulletin of the Atomic Scientists (of Chicago), 1, no. 10 (1946), 1–5.

BIBLIOGRAPHY

A more detailed biography of James Franck is H. G. Kuhn, “James Franck 1882–1964,” in Biographical Memoirs of Fellows of the Royal Society, 11 (1965), 53–74; it includes a complete bibliography by R. L. Platzman.

H. G. Kuhn

Franck, James

views updated May 29 2018

FRANCK, JAMES

FRANCK, JAMES (1882–1964), physicist and Nobel prize winner. Franck, who was born in Hamburg, studied chemistry at Heidelberg and Berlin. He then devoted himself mainly to physics. In 1920 he became a professor of experimental physics, directing the second Physical Institute at Goettingen. In 1925 he and Gustav *Hertz jointly received a Nobel prize for their discovery of the laws governing the impact of an electron on an atom, corroborating Bohr's "obstacle" theory of spectra, according to which atoms cannot absorb any energy below a certain level. In 1933, after the Nazi regime was established, Franck moved to the United States. He became a faculty member of Johns Hopkins University and the University of Chicago and made further investigations into the structure of matter, especially the kinetics of electrons. He also developed brilliant optical methods for determining the dissociation temperatures of chemical combinations from molecular spectra, and confirmed the assumptions on which modern atomic theory rests. In addition, he carried out important investigations in photochemistry.

bibliography:

Mc-Callum and Taylor, Nobel Prize Winners (Zurich, 1938); American Men of Science (1965).

[J. Edwin Holmstrom]

Franck, James

views updated May 23 2018

Franck, James (1882–1964) US physicist, b. Germany. With Gustav Hertz, he experimented in electron bombardment of gases, providing support for the theory of atomic structure proposed by Niels Bohr and information for the quantum theory of Max Planck. Franck and Hertz shared the 1925 Nobel Prize in physics. He worked on the Manhattan Project to develop the atomic bomb, and presented the ‘Franck petition’, which opposed the use of the bomb against Japanese civilians.

More From encyclopedia.com

About this article

James Franck

All Sources -
Updated Aug 13 2018 About encyclopedia.com content Print Topic

You Might Also Like