Skip to main content
Select Source:



Why HCFCs?

Benefits and costs of HCFCs

The future of HCFCs


Hydrochlorofluorocarbons (HCFCs) are compounds consisting of hydrogen, chlorine, fluorine, and carbon atoms. HCFCs and hydrofluorocarbons (HFCs) were created in the 1980s as substitutes for chlorofluorocarbons (CFCs) for use in refrigeration and a wide variety of manufacturing processes. Because all three of these classes of compounds either destroy the stratospheric ozone layer essential to life on Earth or contribute to global warming, international agreements have been signed to eliminate their production and use by either the year 2000 (CFCs) or 2040 (HCFCs and HFCs).

Why HCFCs?

Thomas Midgley, an organic chemist working at the Frigidaire division of General Motors, created chlorofluorocarbons in 1928 as a safe and inexpensive coolant for use in refrigerators and air conditioners. CFCs are nonflammable, nontoxic, noncorroding gases. In addition to their widespread use as coolants, they were used in the manufacturing such products as contact lenses, telephones, artificial hip joints, foam for car seats and furniture, and computer circuit boards. CFCs have also been used as a propellant in aerosol products.

By 1974, however, researchers discovered that CFCs emitted to the atmosphere slowly accumulated in the stratosphere, higher than about 15 mi (25 km) above Earths surface. CFCs are degraded in the stratosphere by solar ultraviolet radiation, and this releases chlorine radicals that attack ozone molecules. Although ozone in the lower atmosphere is a harmful pollutant, in the stratosphere it acts to shield organisms at the surface of Earth from the harmful effects of solar ultraviolet radiation.

When ultraviolet radiation in the stratosphere degrades CFCs or HCFCs, the chlorine released acts to consume ozone molecules, which contain three oxygen atoms, into separate chlorine-oxygen and two-oxygen molecules (the latter is known as oxygen gas). Because the chlorine atoms can persist in the stratosphere for more than a century, they are recycled through the ozone-degrading reactions. One chlorine atom can destroy up to 100,000 molecules of stratospheric ozone.

The use of CFCs as aerosol propellants was banned in the United States, Canada, Switzerland, and the Scandinavian countries in 1978, as the dangers posed by their use were increasingly understood. By the early 1980s, companies such as DuPont, the worlds largest manufacturer of CFCs, were creating alternate, less-damaging compounds, including HCFCs and HFCs.

Benefits and costs of HCFCs

HCFC compounds react differently from CFCs because HCFCs contain a hydrogen atom, which causes these chemicals to decompose photochemically before they reach the stratosphere. HFCs do not contain chlorine and thus do not attack the ozone layer. HCFCs and HFCs survive in the atmosphere for 2 to 40 years, compared with about 150 years for CFCs.

As a result of their shorter persistence and different molecular composition, HCFC and HFC compounds


Chlorofluorocarbons (CFCs) Chemical compounds containing chlorine, fluorine and carbon. CFCs were a key component in the development of refrigeration, air conditioning, and foam products.

Greenhouse gases Gases that contribute to the warming of Earths atmosphere. Examples include carbon dioxide, HCFCs, CFCs, and HFCs.

Hydrofluorocarbons (HFCs) Chemical compounds that contain hydrogen, fluorine, and carbon atoms.

Montreal Protocol on Substances that Deplete the Ozone Layer An agreement signed by 43 countries in 1987, and amended and signed by 90 nations in 1990, to eliminate the production and use of compounds that destroy the ozone layer.

Ozone A gas made up of three atoms of oxygen. Pale blue in color, it is a pollutant in the lower atmosphere, but essential for the survival of life on Earths surface when found in the upper atmosphere because it blocks dangerous ultraviolet solar radiation.

Ozone layer A layer of ozone in the stratosphere that shields the surface of Earth from dangerous ultraviolet solar radiation.

Stratosphere A layer of the upper atmosphere above an altitude of 510.6 mi (817 km) and extending to about 31 mi (50 km), depending on season and latitude. Within the stratosphere, air temperature changes little with altitude, and there are few convective air currents.

Troposphere The layer of air up to 15 mi (24 km) above the surface of Earth, also known as the lower atmosphere.

Ultraviolet radiation Radiation similar to visible light but of shorter wavelength, and thus higher energy.

have replaced CFCs in most major uses, including the production of foams for insulation, furniture, and vehicle seats, and as a coolant in refrigerators and air conditioners.

HCFCs and HFCs are more expensive to manufacture than CFCs and still negatively affect Earths atmosphere to some degree. Although HCFCs destroy 98% less ozone in the stratosphere than do CFCs, HCFCs and HFCs are still greenhouse gases that may contribute to global warming. In comparison to a more common greenhouse gas, CFCs are about 4,100 times more efficient in their global warming potential, while HFCs are 350 times more effective.

The future of HCFCs

CFCs and HCFCs have contributed to the quality of modern life, particularly as valuable components in refrigeration and computer technology. However, their impact on the atmosphere has prompted several countries to agree to stop producing them. The Montreal Protocol on Substances that Deplete the Ozone Layer was signed by 43 countries in 1987 to limit and eventually eliminate the production and use of CFCs. When additional evidence emerged that the ozone layer was being damaged more quickly than originally thought, more than 90 countries signed an amendment to the Montreal Protocol in 1990. In the year 2000, CFCs were banned from use and guidelines included new phase-outs for HCFCs and HFCs by the year 2020 if possible, and no later than 2040.

Research results suggest that there is a need to develop acceptable alternatives to HCFCs. In laboratory tests, male rats exposed to 5,000 parts per million (ppm) of HCFCs over a two-year period (equivalent to what humans working occupationally with the compound might experience over 30-40 years) developed tumors in the pancreas and testes. The tumors were benign and did not result in death for the tested rats. Nevertheless, this research resulted in the recommended eight-hour occupational exposure levels to HCFCs for humans being reduced from 100 ppm to 10 ppm.

Two possible alternatives to HCFCs are already being used successfully. Refrigerators that use propane gas, ammonia, or water as coolants are being tested in research laboratories, and use up to 10% less energy than typical models using CFCs as a coolant. Telephone companies are experimenting with crushed orange peels and other materials to clean computer circuit boards, as substitutes for another important use of CFCs and HCFCs. Certain microorganisms are also being tested that degrade HCFCs and HFCs, which could help in controlling emissions of these compounds during manufacturing processes involving their use.

See also Greenhouse effect; Ozone layer depletion.



Anslyn, E.V. and D.A. Dougherty. Modern Physical Organic Chemistry. Herndon, VA: University Science Books, 2005.

Hobbs, P.V. Introduction to Atmospheric Chemistry. New York: Cambridge University Press, 2006.

Sally Cole-Misch

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Hydrochlorofluorocarbons." The Gale Encyclopedia of Science. . 13 Dec. 2017 <>.

"Hydrochlorofluorocarbons." The Gale Encyclopedia of Science. . (December 13, 2017).

"Hydrochlorofluorocarbons." The Gale Encyclopedia of Science. . Retrieved December 13, 2017 from



The term hydrochlorofluorocarbon (HCFC) refers to halogenated hydrocarbons that contain chlorine and/or fluorine in place of some hydrogen atoms in the molecule. They are chemical cousins of the chlorofluorocarbons (CFCs), but differ from them in that they have less chlorine. A special subgroup of the HCFCs is the hydrofluorocarbons (HFCs), which contain no chlorine at all.

A total of 53 HCFCs and HFCs are possible.

The HCFCs and HFCs have become commercially and environmentally important since the 1980s. Their growing significance has resulted from increasing concerns about the damage being done to stratospheric ozone by CFCs.

Significant production of the CFCs began in the late 1930s. At first, they were used almost exclusively as refrigerants. Gradually other applicationsespecially as propellants and blowing agentswere developed. By 1970, the production of CFCs was growing by more than 10% per year, with a worldwide production of well over 662 million lb (300 million kg) of one family member alone, CFC-11.

Environmental studies began to show, however, that CFCs decompose in the upper atmosphere . Chlorine atoms produced in this reaction attack ozone molecules (O3), converting them to normal oxygen (O2). Since stratospheric ozone provides protection for humans against solar ultraviolet radiation , this finding was a source of great concern. By 1987, 31 nations had signed the Montreal Protocol, agreeing to cut back significantly on their production of CFCs.

The question became how nations were to find substitutes for the CFCs. The problem was especially severe in developing nations where CFCs are widely used in refrigeration and air-conditioning systems. Countries like China and India refused to take part in the CFC-reduction plan unless


developed nations helped them switch over to an equally satisfactory substitute.

Scientists soon learned that HCFCs were a more benign alternative to the CFCs. They discovered that compounds with less chlorine than the amount present in traditional CFCs were less stable and often decomposed before they reached the stratosphere . By mid 1992, the United States Environmental Protection Agency (EPA) had selected 11 chemicals that they considered to be possible replacements for CFCs. Nine of those compounds are HFCs and two are HCFCs.

The HCFC-HFC solution is not totally satisfactory, however. Computer models have shown that nearly all of the proposed substitutes will have at least some slight effect on the ozone layer and the greenhouse effect . In fact, the British government considered banning one possible substitute for CFCs, HCFC-22, almost as soon as the compound was developed. In addition, one of the most promising candidates, HCFC-123, was found to be carcinogenic in rats.

Finally, the cost of replacing CFCs with HCFCs and HFCs is expected to be high. One consulting firm, Metroeconomica, has estimated that CFC substitutes may be six to 15 times as expensive as CFCs themselves.

See also Aerosol; Air pollution; Air pollution control; Air quality; Carcinogen; Ozone layer depletion; Pollution; Pollution control

[David E. Newton ]



Johnson, J. "CFC Substitutes Will Still Add to Global Warming." New Scientist 126 (April 14, 1990): 20.

MacKenzie, D. "Cheaper Alternatives for CFCs." New Scientist 126 (June 30, 1990): 3940.

Pool, R. "Red Flag on CFC Substitute." Nature 352 (July 11, 1991): 352.

Stone, R. "Ozone Depletion: Warm Reception for Substitute Coolant." Science 256 (April 3, 1992): 22.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Hydrochlorofluorocarbons." Environmental Encyclopedia. . 13 Dec. 2017 <>.

"Hydrochlorofluorocarbons." Environmental Encyclopedia. . (December 13, 2017).

"Hydrochlorofluorocarbons." Environmental Encyclopedia. . Retrieved December 13, 2017 from




In most of the processes studied within the physical sciences, the lesson again and again is that nature provides no "free lunch"; in other words, it is not possible to get something for nothing. A chemical reaction, for instance, involves the creation of substances different from those that reacted in the first place, but the number of atoms involved does not change. In view of nature's inherently conservative tendencies, then, the idea of a catalysta substance that speeds up a reaction without being consumedseems almost like a magic trick. But catalysts are very real, and their presence in the human body helps to sustain life. Similarly, catalysts enable the synthesis of foods, and catalytic converters in automobiles protect the environment from dangerous exhaust fumes. Yet the presence of one particular catalyst in the upper atmosphere poses such a threat to Earth's ozone layer that production of certain chemicals containing that substance has been banned.


Reactions and Collisions

In a chemical reaction, substances known as reactants interact with one another to create new substances, called products. In the present context, our concern is not with the reactants and products themselves, but with an additional entity, an agent that enables the reaction to move forward at faster rates and lower temperatures.

According to the collision model generally accepted by chemists, chemical reactions are the result of collisions between molecules. Collisions that are sufficiently energetic break the chemical bonds that hold molecules together; as a result, the atoms in those molecules are free to recombine with other atoms to form new molecules. Hastening of a chemical reaction can be produced in one of three ways. If the concentrations of the reactants are increased, this means that more molecules are colliding, and potentially more bonds are being broken. Likewise if the temperature is increased, the speeds of the molecules themselves increase, and their collisions possess more energy.

Energy is an important component in the chemical reaction because a certain threshold, called the activation energy (E a), must be crossed before a reaction can occur. A temperature increase raises the energy of the collisions, increasing the likelihood that the activation-energy threshold will be crossed, resulting in the breaking of molecular bonds.

Catalysts and Catalysis

It is not always feasible or desirable, however, to increase the concentration of reactants, or the temperature of the system in which the reaction is to occur. Many of the processes that take place in the human body, for instance, "should" require high temperaturestemperatures too high to sustain human life. But fortunately, our bodies contain proteins called enzymes, discussed later in this essay, that facilitate the necessary reactions without raising temperatures or increasing the concentrations of substances.

An enzyme is an example of a catalyst, a substance that speeds up a reaction without participating in it either as a reactant or product. Catalysts are thus not consumed in the reaction. The catalyst does its workcatalysisby creating a different path for the reaction, and though the means whereby it does this are too complex to discuss in detail here, the process of catalyst can at least be presented in general terms.

Imagine a graph whose x-axis is labeled "reaction progress," while the y-axis bears the legend "energy." There is some value of y equal to the normal activation energy, and in the course of experiencing the molecular collisions that lead to a reaction, the reactants reach this level. In a catalyzed reaction, however, the level of activation energy necessary for the reaction is represented by a lower y-value on the graph. The catalyzed substances do not need to have as much energy as they do without a catalyst, and therefore the reaction can proceed more quicklywithout changing the temperature or concentrations of reactants.


A Brief History of Catalysis

Long before chemists recognized the existence of catalysts, ordinary people had been using the process of catalysis for a number of purposes: making soap, for instance, or fermenting wine to create vinegar, or leavening bread. Early in the nineteenth century, chemists began to take note of this phenomenon.

In 1812, Russian chemist Gottlieb Kirchhof was studying the conversion of starches to sugar in the presence of strong acids when he noticed something interesting. When a suspension of starch in water was boiled, Kirchhof observed, no change occurred in the starch. However, when he added a few drops of concentrated acid before boiling the suspension (that is, particles of starch suspended in water), he obtained a very different result. This time, the starch broke down to form glucose, a simple sugar, while the acidwhich clearly had facilitated the reactionunderwent no change.

Around the same time, English chemist Sir Humphry Davy (1778-1829) noticed that in certain organic reactions, platinum acted to speed along the reaction without undergoing any change. Later on, Davy's star pupil, the great British physicist and chemist Michael Faraday (1791-1867), demonstrated the ability of platinum to recombine hydrogen and oxygen that had been separated by the electrolysis of water. The catalytic properties of platinum later found application in catalytic converters, as we shall see.


In 1835, Swedish chemist Jons Berzelius (1779-1848) provided a name to the process Kirchhof and Davy had observed from very different perspectives: catalysis, derived from the Greek words kata ("down") and lyein ("loosen.") As Berzelius defined it, catalysis involved an activity quite different from that of an ordinary chemical reaction. Catalysis induced decomposition in substances, resulting in the formation of new compoundsbut without the catalyst itself actually entering the compound.

Berzelius's definition assumed that a catalyst manages to do what it does without changing at all. This was perfectly adequate for describing heterogeneous catalysis, in which the catalyst and the reactants are in different phases of matter. In the platinum-catalyzed reactions that Davy and Faraday observed, for instance, the platinum is a solid, while the reaction itself takes place in a gaseous or liquid state. However, homogeneous catalysis, in which catalyst and reactants are in the same state, required a different explanation, which English chemist Alexander William Williamson (1824-1904) provided in an 1852 study.

In discussing the reaction observed by Kirchhof, of liquid sulfuric acid with starch in an aqueous solution, Williamson was able to show that the catalyst does break down in the course of the reaction. As the reaction takes place, it forms an intermediate compound, but this too is broken down before the reaction ends. The catalyst thus emerges in the same form it had at the beginning of the reaction.

Enzymes: Helpful Catalysts in the Body

In 1833, French physiologist Anselme Payen (1795-1871) isolated a material from malt that accelerated the conversion of starch to sugar, as for instance in the brewing of beer. Payen gave the name "diastase" to this substance, and in 1857, the renowned French chemist Louis Pasteur (1822-1895) suggested that lactic acid fermentation is caused by a living organism.

In fact, the catalysts studied by Pasteur are not themselves separate organisms, as German biochemist Eduard Buchner (1860-1917) showed in 1897. Buchner isolated the catalysts that bring about the fermentation of alcohol from living yeast cellswhat Payen had called "diastase," and Pasteur "ferments." Buchner demonstrated that these are actually chemical substances, not organisms. By that time, German physiologist Willy Kahne had suggested the name "enzyme" for these catalysts in living systems.

Enzymes are made up of amino acids, which in turn are constructed from organic compounds called proteins. About 20 amino acids make up the building blocks of the many thousands of known enzymes. The beauty of an enzyme is that it speeds up complex, life-sustaining reactions in the human bodyreactions that would be too slow at ordinary body temperatures. Rather than force the body to undergo harmful increases in temperature, the enzyme facilitates the reaction by opening up a different reaction pathway that allows a lower activation energy.

One example of an enzyme is cytochrome, which aids the respiratory system by catalyzing the combination of oxygen with hydrogen within the cells. Other enzymes facilitate the conversion of food to energy, and make possible a variety of other necessary biological functions.

Because numerous interactions are required in their work of catalysis, enzymes are very large, and may have atomic mass figures as high as 1 million amu. However, it should be noted that reactions are catalyzed at very specific locationscalled active siteson an enzyme. The reactant molecule fits neatly into the active site on the enzyme, much like a key fitting in a lock; hence the name of this theory, the "lock-and-model."

Catalysis and the Environment

The exhaust from an automobile contains many substances that are harmful to the environment. As a result of increased concerns regarding the potential damage to the atmosphere, the federal government in the 1970s mandated the adoption of catalytic converters, devices that employ a catalyst to transform pollutants in the exhaust to less harmful substances.

Platinum and palladium are favored materials for catalytic converters, though some nonmetallic materials, such as ceramics, have been used as well. In any case, the function of a catalytic converter is to convert exhausts through oxidation-reduction reactions. Nitric oxide is reduced to molecular oxygen and nitrogen; at the same time, the hydrocarbons in petroleum, along with carbon monoxide, are oxidized to form carbon dioxide and water. Sometimes a reducing agent, such as ammonia, is used to make the reduction process more effective.


Around the same time that automakers began rolling out models equipped with catalytic converters, scientists and the general public alike became increasingly concerned about another threat to the environment. In the upper atmosphere of Earth are traces of ozone, a triatomic (three-atom) molecular form of oxygen which protects the planet from the Sun's ultraviolet rays. During the latter part of the twentieth century, it became apparent that a hole had developed in the ozone layer over Antarctica, and many chemists suspected a culprit in chlorofluorocarbons, or CFCs.

CFCs had long been used in refrigerants and air conditioners, and as propellants in aerosol sprays. Because they were nontoxic and noncorrosive, they worked quite well for such purposes, but the fact that they are chemically unreactive had an extremely negative side-effect. Instead of reacting with other substances to form new compounds, they linger in Earth's atmosphere, eventually drifting to high altitudes, where ultraviolet light decomposes them. The real trouble begins when atoms of chlorine, isolated from the CFC, encounter ozone.

Chlorine acts as a catalyst to transform the ozone to elemental oxygen, which is not nearly as effective as ozone for shielding Earth from ultra-violet light. It does so by interacting also with monatomic, or single-atom oxygen, with which it produces ClO, or the hypochlorite ion. The end result of reactions between chlorine, monatomic oxygen, hypochlorite, and ozone is the production of chlorine, hypochlorite, and diatomic oxygenin other words, no more ozone. It is estimated that a single chlorine atom can destroy up to 1 million ozone molecules per second.

Due to concerns about the danger to the ozone layer, an international agreement called the Montreal Protocol, signed in 1996, banned the production of CFCs and the coolant Freon that contains them. But people still need coolants for their homes and cars, and this has led to the creation of substitutesmost notably hydrochlorofluorocarbons (HCFCs), organic compounds that do not catalyze ozone.

Other Examples of Catalysts

Catalysts appear in a number of reactions, both natural and artificial. For instance, catalysts are used in the industrial production of ammonia, nitric acid (produced from ammonia), sulfuric acid, and other substances. The ammonia process, developed in 1908 by German chemist Fritz Haber (1868-1934), is particularly noteworthy. Using iron as a catalyst, Haber was able to combine nitrogen and hydrogen under pressure to form ammoniaone of the world's most widely used chemicals.

Eighteen ninety-seven was a good year for catalysts. In that year, it was accidentally discovered that mercury catalyzes the reaction by which indigo dye is produced; also in 1897, French chemist Paul Sabatier (1854-1941) found that nickel catalyzes the production of edible fats. Thanks to Sabatier's discovery, nickel is used to transform inedible plant oils to margarine and shortening.

Another good year for catalystsparticularly those involved in the production of polymerswas 1953. That was the year when German chemist Karl Ziegler (1898-1973) discovered a resin catalyst for the production of polyethylene, which produced a newer, tougher product with a much higher melting point than polyethylene as it was produced up to that time. Also in 1953, Italian chemist Giulio Natta (1903-1979) adapted Ziegler's idea, and developed a new type of plastic he called "isotactic" polymers. These could be produced easily, and in abundance, through the use of catalysts.

One of the lessons of chemistry, or indeed of any science, is that there are few things chemists can do that nature cannot achieve on a far more wondrous scale. No artificial catalyst can compete with enzymes, and no use of a catalyst in a laboratory can compare with the grandeur of that which takes place on the Sun. As German-American physicist Hans Bethe (1906-) showed in 1938, the reactions of hydrogen that form helium on the surface of the Sun are catalyzed by carbonthe same element, incidentally, found in all living things on Earth.


"Bugs in the News: What the Heck Is an Enzyme?" University of Kansas (Web site). <> (June 9, 2001).

"Catalysis." University of Idaho Department of Chemistry (Web site). <> (June 9, 2001).

"Catalysts" (Web site). <> (June 9, 2001).

Ebbing, Darrell D.; R. A. D. Wentworth; and James P. Birk. Introductory Chemistry. Boston: Houghton Mifflin, 1995.

"Enzymes." Strategis (Web site). <> (June 9, 2001).

"Enzymes: Classification, Structure, Mechanism." The Hebrew University (Web site). <> (June 9, 2001).

Oxlade, Chris. Chemistry. Illustrated by Chris Fairclough. Austin, TX: Raintree Steck-Vaughn, 1999.

"Ozone Depletion" (Web site). <> (June 9, 2001).

"University Chemistry: Chemical Kinetics: Catalysis." University of Alberta Department of Chemistry (Web site). <> (June 9, 2001).

Zumdahl, Steven S. Introductory Chemistry: A Foundation, 4th ed. Boston: Houghton Mifflin, 2000.



The minimal energy required to convert reactants intoproducts, symbolized Ea


A mixture of water and a substance that is dissolved in it.


A substance that speeds upa chemical reaction without participating in it, either as a reactant or product. Catalysts are thus not consumed in the reaction.


A process whereby the chemical properties of a substance are changed by a rearrangement of the atoms in the substance.


The theory that chemical reactions are the result of collisions between molecules strong enough to break bonds in the reactants, resulting in are formation of atoms.


A reaction in which the catalyst and the reactants are in different phases of matter.


A reaction in which catalyst and reactants are in the same phase of matter.


The substance or substances that result from a chemical reaction.


A substance that interacts with another substance in a chemical reaction, resulting in a product.


In chemistry and other sciences, the term "system" usually refers to any set of interactions isolated from the rest of the universe. Anything outside of the system, including all factors and forces irrelevant to a discussion of that system, is known as the environment.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Catalysts." Science of Everyday Things. . 13 Dec. 2017 <>.

"Catalysts." Science of Everyday Things. . (December 13, 2017).

"Catalysts." Science of Everyday Things. . Retrieved December 13, 2017 from