Skip to main content

Climate

CLIMATE

CLIMATE. The climate of an area, defined as the aggregate of weather conditions over time, is constructed from monthly, seasonal, and annual averages of weather elements, such as temperature and precipitation, combined with statements about the frequency of extreme events, such as droughts or tornadoes. Historically, climate has had important economic implications for agriculture, transportation, and settlement. Climatology, or the scientific study of climate, dates to the mid-nineteenth century and includes such specialties as applied climatology, climate dynamics, and climate change.

The classical heritage related the climate of an area uniquely to its latitude. Climate, from the Greek klima, meaning "inclination," was originally thought to depend only on the height of the sun above the horizon, modified in part by special local characteristics. Climate and health have also been closely related throughout history. According to the Hippocratic tradition of ancient Greece, a physician should consider the seasons of the year and what effects each of them produces; the location of a city with respect to winds, waters, terrain, and the rising of the sun; and the particulars of the weather. These were keys to diagnosing and treating diseases in a given location.

The Puzzle of the Early American Climate

Because of its seemingly favorable location in latitudes farther south than most European nations, the New World was expected to have a warm, exotic climate. Initially, colonists and their sponsors envisioned a rich harvest of wine, silk, olive oil, sugar, and spices from their investment. In 1588 the colonial promoter Thomas Harriot pointed out that Virginia was located on the same parallel of latitude as many exotic places, including Persia,

China, and Japan in the East and southern Greece, Italy, and Spain in the West. The reality was much different, however. Early settlers in the Americas found the climate harsher and the storms more frequent and more powerful than in the Old World. In 1644 the Reverend John Campanius of Swedes' Fort, Delaware, wrote of violent winds, unknown in Europe, which tore mighty oaks out of the ground. Another colonist in New Sweden, Thomas Campanius Holm, described rainstorms in which the whole sky was filled with smoke and flames. James Mac Sparran, a missionary to Rhode Island between 1721 and 1757, warned against immigrating to America because the climate was unhealthy, with excessive heat and cold, sudden changes of weather, unwholesome air, and terrible thunder and lightning.

Because of such reports, many Europeans held considerable disdain for the New World and for its climate, soil, animals, and indigenous peoples. The noted Parisian naturalist Georges-Louis Leclerc de Buffon speculated that, because of the cool and humid climate, the flora and fauna of the New World were degenerate. The celebrated botanist and traveler Pehr Kalm observed, rightly or not, that every life-form had less stamina in the New World. People died younger, women reached menopause earlier, soldiers lacked the vitality of their English counterparts, and even the imported cattle were smaller. He pointed to climatic influences as the probable cause.

Citizens in colonial and early America were quite defensive about these opinions and argued that clearing the forests, draining the swamps, and cultivating the land would improve the climate by changing the temperature and rainfall patterns. No general agreement, however, emerged about the direction or magnitude of the change. The Reverend Cotton Mather wrote in the Christian Philosopher (1721) that he believed it was getting warmer. Benjamin Franklin agreed, noting that compared to forested lands, cleared land absorbs more heat and melts snow quicker. In his Notes on the State of Virginia (1785), addressed to a European audience, Thomas Jefferson presented an apology for the harsh American climate and an optimistic prognosis for its improvement by human activities. Hugh Williamson of Harvard College spoke for his generation when he wrote in Observations on the Climate in Different Parts of America (1811) that settlement would result in a temperate climate and clear atmosphere that would serve as "a proper nursery of genius, learning, industry and the liberal arts." In his mind such changes added up to a continent better suited to white settlers and less suited to aboriginal inhabitants.

Climate Observations and Medical Meteorology

The first comprehensive series of meteorological observations in America, taken by John Lining, a physician in Charleston, were related to his medical concerns. In 1740, Lining collected the intake and outflow of his own body for a period of one year in an effort to understand how the weather affected bodily humors and epidemic diseases. Related efforts by Lionel Chalmers, An Account of the Weather and Diseases of South Carolina (1776); William Currie, An Historical Account of the Climates and Diseases of the United States of America (1792); and Noah Webster, A Brief History of Epidemic and Pestilential Diseases (1799) linked regional health conditions to climate and extreme weather events.

Jefferson and the Reverend James Madison began the first simultaneous comparative meteorological measurements in America in 1778. As president of the American Philosophical Society, Jefferson collected weather journals from around the county. He also directed the Lewis and Clark expedition (1804–1806) to take weather observations along the Missouri River and in the Pacific Northwest. Jefferson was a strong advocate for a national meteorological system and encouraged the federal government to supply observers in each county of each state with accurate instruments. Although such a system was not established in his lifetime, many government agencies soon began collecting and compiling observations. During the War of 1812, the surgeon general of the army, James Tilton, ordered the physicians under his command to "keep a diary of the weather" and to file detailed reports on the effects of the climate on the health of the troops. This was because more soldiers were falling ill in camp than were being injured in military engagements. The U.S. Army Medical Department continued its system of taking meteorological measurements at army posts across the country until 1874, in part to document potential changes in the climate. Other early governmental systems included the General Land Office (1817–1821), interested primarily in settlement west of the Appalachian Mountains, and academies in the state of New York (1825–1850), where students collected climatic and phenological statistics. In the 1850s, the U.S. Navy compiled wind and weather charts for the oceans under the direction of Matthew Fontaine Maury.

Under the direction of Joseph Henry, the Smithsonian Institution served as a national center to advance and coordinate meteorological research. The institution conducted storm studies, experimented with telegraphic weather prediction, and collected climate statistics. It also served as a clearinghouse for cooperative observations taken by the navy, the army topographical engineers, the Patent Office, the Coast Survey, the Department of Agriculture, and the government of Canada. Projects completed with Smithsonian data included Climatology of the United States (1857) by Lorin Blodget, Winds of the Globe (1875) by James Henry Coffin, and theoretical studies of the general circulation of the Earth's atmosphere by William Ferrel.

In 1858, Ferrel announced a new theory of fluid mechanics that explained both meridional (E-W) and zonal (N-S) wind flows on the rotating Earth. He wrote equations of motion that accounted for most of the observed features of the general circulation: three vertical circulation cells instead of just one traditional "Hadley cell," high-velocity westerly winds in midlatitudes in both hemispheres, easterly trade winds in the tropics, and low pressure with easterly winds near the poles. Later commentators referred to Ferrel's theory as the "principia meteorologica" because of its fundamental implications for subsequent studies of climate dynamics.

In 1870, Congress established the first national weather service and placed it under the auspices of the Army Signal Office. Colonel Albert J. Myer became the first director of a well-funded national storm warning system employing the nation's telegraphy circuits "for the benefit of commerce and agriculture." In addition to providing daily reports of current conditions and "probabilities" for the next day's weather, the Signal Office collected official climate statistics for the nation. By 1891 the U.S. Weather Bureau had been established in the Department of Agriculture, where it remained until 1940, when it was transferred to the Department of Commerce.

Climate Change in the Nineteenth Century

In 1844, Samuel Forry analyzed data gathered from more than sixty army medical officers and concluded (a) climates are stable and no accurate the rmometrical observations warrant the conclusion of climatic change, (b) climates can be changed by human activity, but (c) these effects are extremely subordinate to physical geography. Elias Loomis studied the temperature of New Haven, Connecticut, and Charles A. Schott constructed national maps of temperature and rainfall. Neither scientist found evidence that humans were changing the climate. Cleveland Abbe, the chief scientist with the National Weather Service, agreed that the old debates about climate change had finally been settled. In an article entitled "Is Our Climate Changing?" published in Forum in February 1889, Abbe defined the climate as "the average about which the temporary conditions permanently oscillate; it assumes and implies permanence."

As the debate over climate change caused by human activities was winding down in the mid-nineteenth century, the discovery that the earth had experienced ice ages produced a plethora of complex but highly speculative theories of climatic change involving astronomical, physical, geological, and paleontological factors. The leading American involved in these discoveries was the prominent glacial geologist T. C. Chamberlin, whose interdisciplinary work on the geological agency of the atmosphere and the effect of carbon dioxide on climate led him to propose a new theory of the formation of the earth and the solar system.

Regional Climates and Identities

Many regions of the United States experience distinctive climatic phenomena. New England, the Appalachian Highlands, and the upper Mississippi Valley have rigorous winters with snow covering the ground, often for several months. The East Coast has a relatively mild climate due to the proximity of the Atlantic Ocean, but these areas are susceptible to land-falling Atlantic hurricanes and

winter "nor'easters." The Deep South has hot summers and mild winters with high humidity because of the proximity of the warm waters of the Caribbean and the Gulf of Mexico; on average this area has the most thunderstorms. The heartland experiences the most violent tornadoes, while the high Plains have the most hailstorms. Monsoonal flows from Mexico water the desert Southwest, while California is susceptible to drying "Santa Anna" winds that can exacerbate wildfires. As scientists have come to realize, all regions of the country may be affected by the El Niño Southern Oscillation of the Pacific Ocean.

It would be foolish to argue that such climatic differences "determined" social relations in these regions, just as it would be futile to argue that the environment made little or no difference to people's lives. It is more productive to ask how the flux of economic and social activities over time changed human relationships with nature in sometimes subtle but often dramatic ways. Horse-drawn sleighs were traditionally safe, enjoyable, and often productive means of winter transportation, yet the widespread use of the automobile transformed snow from a transportation resource into a hazard. Pioneers facing the onset of winter and the possibility of crop failure due to frosts believed that warmer weather was better weather, while contemporary city dwellers in urban heat islands find the weather unbearably hot. Air conditioning undoubtedly stimulated the growth of the Sun Belt, while access to freshwater resources may determine the region's future. In general, social and technological changes and changes in scientific understanding of climate have occurred at much faster rates than have physical changes in the climate system.

Settlers seeking to relocate west of the Appalachian Mountains usually headed due west. They assumed that the climatic zone they were familiar with followed parallels of latitude. Generally, this is not the case, since agricultural hardiness zones gradually slope from northeast to southwest. Thus, for example, settlers from Connecticut established the Western Reserve in Ohio. Further west across the Mississippi River lay the semiarid, treeless prairies that were originally called the "Great American Desert." While farmers on the northern and eastern margins of this area, where annual rainfall totals twenty inches or more, had considerable success, precipitation decreases dramatically to the south and west, attaining true desert conditions in New Mexico and Arizona. The Homestead Act of 1862 encouraged farmers ever westward into marginal lands that were fertile only when it rained. Promoters even resorted to the dubious argument that agriculture somehow increases rainfall, or "rain follows the plow." A succession of drought years could devastate farms, however, as was the case in the decade-long Dust Bowl of the 1930s in the southern Great Plains.

Climate Change in the Twentieth Century

By 1900 most of the chief theories of climate change had been proposed if not yet fully explored: changes in solar output; changes in the earth's orbital geometry; changes in terrestrial geography, including the form and height of continents and the circulation of the oceans; and changes in atmospheric transparency and composition, in part due to human activities. During the International Geophysical Year (1957–1958), Harry Wexler of the U.S. Weather Bureau succeeded in establishing a series of accurate measurements of carbon dioxide. After 1958 these measurements were accurately and faithfully taken at the summit of Mauna Loa volcano in Hawaii by Charles David Keeling. Subsequently, many more international baseline stations have been established. The Keeling curve, the famous saw-toothed curve of rising carbon dioxide concentrations, became the environmental icon of the twentieth century.

In the 1950s, Gilbert Plass developed a computer model of infrared radiative transfer in support of his re-search on carbondioxide and climate. Several years later, in the interest of national security, a climate model known as Nile Blue was developed by the Advanced Research Projects Administration (ARPA) in the Department of Defense. It was hoped that this model could be used to test the sensitivity of the climate to major perturbations, including Soviet tinkering or a major environmental war. In 1967, Syukuro Manabe and Richard T. Wetherald developed a computerized climate model that included the effects of both radiation and convection to calculate temperature as a function of latitude. It predicted a mean warming of 2.3 degrees Celsius for a doubling of carbon dioxide. Two years later, Manabe and Kirk Bryan added basic oceanic features to the model.

The rise of the environmental movement in the early 1970s generated interest in global environmental problems, including climate change. In 1971, when some meteorologists were looking into the possibility of a widespread global cooling, a report from the Study of Man's Impact on Climate conducted at the Massachusetts Institute of Technology returned the focus to carbon dioxide emissions, calling them the largest single anthropogenic change that may influence the climate in the foreseeable future. During this period, anthropogenic effects on climate were called "inadvertent" climate modification. Several other regional and global pollution issues also emerged in the 1970s, including acid deposition and possible damage to the stratosphere by ozone-depleting chemicals and by the exhaust gases of a fleet of supersonic transport planes.

In the 1980s, scientists debated the possibility of a "nuclear winter" caused by an all-out nuclear exchange. Discovery of depleted levels of ozone over Antarctica in 1985 led to the international Montreal Protocol on Substances that Deplete the Ozone Layer, signed in 1987. In 1988 the scientist James Hansen of the National Aeronautics and Space Administration announced to Congress and the world, "Global warming has begun." He went on to report that, at least to his satisfaction, he had seen the "signal" in the climate noise and that the earth was destined for global warming, perhaps in the form of a runaway greenhouse effect. Hansen later revised his remarks, but his statement remained the starting point of widespread concerns over global warming. That same year the Intergovernmental Panel on Climate Change was formed as a joint program of the United Nations Environmental Program, the World Meteorological Organization, and the International Congress of Scientific Unions. It has a mandate to prepare regular assessments of what is known and what should be done about anthropogenic climate change.

The 1992 United Nations Conference on Environment and Development (the Earth Summit) in Rio de Janeiro produced the Framework Convention on Climate Change (FCCC), which calls for a stabilization of atmospheric carbon dioxide concentrations at a level that would prevent human-induced changes in the global climate. The 1997 Kyoto Protocol, calling for legally binding greenhouse gas emission targets for all developed countries, remained a contentious issue in the early twenty-first century. These conventions and protocols represent geopolitical interventions in the climate system. Many more policies were initiated. Economics also began to play a role, as taxes and incentives were put in place to reduce unwanted emissions. Meanwhile, green social engineers attempted to convince the general public to live sustainably, while "geoengineers" hold in reserve massive technical fixes for the climate system. Notably, health issues related to possible climate change returned as policy issues.

Conclusion

The climate issues that puzzled colonists and early Americans were eventually resolved by government-supported scientists who compiled climate statistics for the continent. Changes in human-climate relations were typically caused not by climate change but by people migrating to new regions or by changes in social relations or technology. Anolder medical geography of "airs, waters, and places" was replaced by the germ theory of disease. Yet as Americans gained control of their microclimatic environments through irrigation, central heating, and air conditioning, they began to lose control of the damage they inflicted on the environment, for example, by excessive burning of fossil fuels. In the second half of the twentieth century, new reasons for climate apprehension emerged in the form of local, regional, and global threats to the atmosphere and to human health. By the dawn of the twenty-first century, the social aspects of the climate had grown to encompass scientific, economic, governmental, and diplomatic initiatives regarding the health and future of the planet.

BIBLIOGRAPHY

Fleming, James Rodger. Meteorology in America, 1800–1870. Baltimore: Johns Hopkins University Press, 1990.

———. Historical Perspectives on Climate Change and Culture. New York: Oxford University Press, 1998.

Fleming, James Rodger, ed. Historical Essays on Meteorology, 1919–1995. Boston: American Meteorological Society, 1996.

Kupperman, Karen Ordahl. "The Puzzle of the American Climate in the Early Colonial Period." American Historical Re-view 87 (1982): 1262–1289.

Ludlum, David M. The American Weather Book. Boston: Houghton Mifflin, 1982.

Mergen, Bernard. Snow in America. Washington, D.C.: Smithsonian Institution Press, 1997.

Meyer, William B. Americans and Their Weather. New York: Oxford University Press, 2000.

JamesFleming

See alsoAcid Rain ; Global Warming ; Meteorology ; Ozone Depletion ; Weather Service, National .

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Climate." Dictionary of American History. . Encyclopedia.com. 24 Feb. 2017 <http://www.encyclopedia.com>.

"Climate." Dictionary of American History. . Encyclopedia.com. (February 24, 2017). http://www.encyclopedia.com/history/dictionaries-thesauruses-pictures-and-press-releases/climate

"Climate." Dictionary of American History. . Retrieved February 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/history/dictionaries-thesauruses-pictures-and-press-releases/climate

Climate and the Ocean

Climate and the Ocean

Weather is defined as the state of the atmosphere at a specific place and time, whereas climate is a long-term average of weather in a region. Many factors combine to create the different climates found throughout the world, such as the amount of solar radiation an area receives, local terrain, nearby large bodies of water, and changing geological and biological conditions. Small changes in Earth's orbital pattern around the Sun also can have major effects on climate.

Meteorologists have achieved some success at predicting weather patterns in part because they are of a localized nature and of short duration. Climate, however, takes into account weather factors over a larger region and a longer timespan, and hence is much harder to predict.

Factors Affecting Earth's Climate

The primary factor that affects climate is solar radiation. About half of the Sun's energy radiated towards Earth is absorbed, but this energy is not evenly distributed across the surface. Factors that influence absorption are the transparency of the atmosphere, the angle of the Sun above Earth's surface, and the reflectivity of that surface.

The angle of the Sun above the horizon, known as the angle of incidence, determines the amount of energy striking Earth. If the angle of incidence is high, as it is in the equatorial region, with the Sun nearly perpendicular to Earth's surface, maximum energy will be spread over a small surface area with little reflection. As the angle of incidence drops, as when nearing the poles, the same amount of energy is spread over a much larger area due to the increased angle. More solar energy is reflected out of Earth's system if it comes in at an angle.

The absorption of solar energy is also influenced by Earth's orbital inclination. Because Earth is tilted on its rotational axis 23.5 degrees relative to its orbital plane around the Sun (the ecliptic), middle latitudes of the Northern Hemisphere receive about three times more solar radiation in June than in December. As Earth orbits the Sun, first the Northern Hemisphere, then the Southern Hemisphere is tilted closer to the Sun, creating the seasons. On June 21, the Sun is directly overhead at noon at the Tropic of Cancer. This date is the summer solstice of the Northern Hemisphere. By December 21, southern hemisphere solstice, the Sun is directly over the Tropic of Capricorn at 23.5 degrees south latitude.

This uneven solar heating has created climatic regions of the open ocean that run parallel to the lines of latitude. These climatic regions are relatively stable and are only slightly influenced by surface currents.

Heat Transfer.

If the heat from the Sun were not redistributed, the poles would be much colder and the equator much hotter than they are. Moving currents of air and ocean water redistribute the heat over Earth. Evaporation of water at the equator adds latent heat of vaporization to the atmosphere. The hot, humid air rises at the equator, forming two circulation cells, one on each side.

The influence of Earth's spin causes the velocity at the equator to be much greater than the velocity near the poles. This creates the Coriolis effect, deflecting moving fluids to the right in the Northern Hemisphere, and to the left in the Southern Hemisphere. The resulting complications cause each hemisphere to have three atmospheric circulation cells instead of only one.

The Hadley cells consist of hot air rising at the equator, becoming cooler and denser with movement upward and poleward, and sinking at about 30 degrees north and south latitude. Poleward of the Hadley cells, atmospheric circulation is governed by the Ferrell and Polar circulation cells (see Figure 1). The air rising and sinking at the junctures between these cells governs surface winds and atmospheric pressure across Earth.

Climate Zones

The equatorial region receives the maximum amount of solar radiation. The warm air is capable of evaporating and storing large amounts of water vapor. The warm air begins to rise, causing weak, variable surface winds, known by sailors as the "doldrums." This moist, rising air cools with altitude , generating rain showers almost daily.

Tropical regions extend north and south from the narrow equatorial region to about the Tropic of Cancer and the Tropic of Capricorn, respectively. This is the area of trade winds, favored by early sailors where consistent winds maintain the strong equatorial currents. Rising heat and water vapor generate the tropical storms and cyclones for which this region is well known.

North and south of the tropics lies a band of hot, dry air known as the subtropical regions. Descending air creates a high-pressure belt with low precipitation, and as in the equatorial region, minimal ocean currents and weak winds. These are the so-called "horse latitudes," where the hot, dry air evaporates the ocean water at an accelerated rate.

The temperate regions lie above 40 degrees North and South latitude. The prevailing westerlies dominate this region with strong winds and unstable weather. As on land, this region is well known for storms of great size and intensity, especially when hot, moist air, as in a tropical cyclone, mixes with the cooler air of the temperate region.

The subpolar regions have predominately low pressure and areas of high precipitation. Sea-surface temperatures reach a summer high of only 5°C (41°F). This allows sea ice to form during winter months and completely cover the ocean until the spring thaw.

The polar regions constantly have high-pressure conditions and very little precipitation. Temperatures rarely rise above freezing and remain below zero most of the year. These regions have the harshest conditions on Earth. Winds seldom cease and the year is divided into six months of light, followed by six months of darkness. Only a few areas in Antarctica briefly escape the lock of the ice.

Climate Change

The study of fossil records indicates that Earth's climate has shifted numerous times in the geologic past. Many plant and animal species have evolved and then disappeared throughout Earth's past. Climate change has been suggested as a possible cause for some of these mass extinctions.

Climate changes may be caused by several factors: a sudden decrease in amount of available sunlight; variations in Earth's orbit around the Sun; major changes in circulation patterns of the ocean; and changes in the amount of infrared-absorbing greenhouse gases in the atmosphere. The interaction of all these causes, and positive and negative feedbacks among them, make climate predictions very difficult.

Evidence additionally confirms that erupting volcanoes (e.g., Krakatoa, Pinatubo) and impacting asteroids have altered Earth's climate by filling the atmosphere with particulate matter. This is seen in the study of terrestrial outcrops of rock, and of core samples from ocean-floor sediments. If solar energy is severely restricted for an extended period, a drastic change in Earth's climate will result.

Changes in Earth's orbit may create climate changes. The tilt of the rotation axis oscillates between 22.1 and 24.5 degrees over a 40,000-year period. The shape of the orbit changes between an ellipse and a circle over a 100,000 year span. And this spin axis wobbles with an 11,000-year cycle.

Major changes in ocean circulation have important effects on global climate. For example, the geologic closing of the Isthmus of Panama caused a reorganization of currents 4 million years ago. As the Atlantic surface currents pass through the Trade Wind Belt they become saltier by evaporation of water. Instead of moving westward into the Pacific Ocean, the salty water is now blocked by Panama and flows into the North Atlantic. There it is chilled and becomes quite dense, forming the sinking North Atlantic Deep Water that begins the deep-current conveyer belt. If the surface water were fresher, it would be less dense. Instead of sinking, it might flow into polar regions and warm them. Sinking of this water initiated an ice age ; changes in the sinking rate appear to have been closely linked to glacial and interglacial changes in the Northern Hemisphere.

Glacial and Interglacial Periods.

During long periods of cooling, snow and ice could not melt as fast as they accumulated. Over time, glaciers began to form and grow, causing weather changes over the huge ice masses covering the poles. Water evaporated from the oceans and was locked up as snow and ice at the higher latitudes. Because Earth holds only a finite amount of water, ocean levels began to drop. At the height of the last glacial age about 18,000 years ago, the oceans may have been as low as 150 meters (500 feet) below their present level.

Warming climates would melt glacial ice faster than it was being created, slowly recharging the ocean basins. These periods of interglaciation generally exhibited mild enough conditions to push back the polar glaciers and allow for migration and distribution of both marine and terrestrial species, including humans.

Global Warming.

Global warming will be a point of research and debate for the foreseeable future. Global warming is part of a natural cycle in the broader climate-change scenario, which is confirmed in the fossil and geologic record. However, human activity has had an impact that, if not causing global warming, is at least helping to accelerate it. Records of atmospheric CO2 in glacial ice over time show a correlation between high CO2 content and warming of the global climate.

Researchers agree that global warming will produce changes, but do not agree as to what exactly those changes will be or their intensity. An increase in tropical storms, heat waves, and precipitation has been suggested. The rise in global temperatures may influence the ocean's deep-water circulation patterns, which can cause rapid climate change, which in turn would affect the global distribution of plant and animal species.

Another possible change would be accelerated melting of the polar ice caps. Water released from the melting ice would cause a rise in sea level, flooding low-lying coastal areas.

see also Carbon Dioxide in the Ocean and Atmosphere; El NiÑo and La Niña; Glaciers, Ice Sheets, and Climate Change; Global Warming and the Hydrologic Cycle; Global Warming and the Ocean; Ice at Sea; Ocean Currents; Oceans, Polar; Oceans, Tropical; Weather and the Ocean.

Ron Crouse

Bibliography

Ahrens, C. Donald. Essentials of Meteorology, An Invitation to the Atmosphere. Minneapolis/St. Paul, MN: West Publishing Company, 1993.

Charlson, Robert J. "The Coupling of Biogeochemical Cycles and Climate: Forcings, Feedbacks, and Responses." In Earth System Science From Biogeochemical Cycles to Global Changes, eds. Michael Jacobson, et al. San Diego, CA: Academic Press, 2000.

Garrison, Tom. Oceanography, An Invitation to Marine Science. New York: Wadsworth Publishing Company, 1996.

Philander, S. George. Is the Temperature Rising? The Uncertain Science of Global Warming. Princeton, NJ: Princeton University Press, 1998.

Stanley, Steven M. "Ocean Circulation: Conveyer of Past and Future Climate." In The Earth Around Us, ed. Jill S. Schneiderman. New York: W.H. Freeman and Company, 2000.

Thurman, Harold V., and Alan P. Trujillo. Essentials of Oceanography. Upper Saddle River, NJ: Prentice Hall, 1999.

Internet Resources

National Climatic Data Center. National Oceanic and Atmospheric Administration. <http://lwf.ncdc.noaa.gov/oa/ncdc.html>.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Climate and the Ocean." Water:Science and Issues. . Encyclopedia.com. 24 Feb. 2017 <http://www.encyclopedia.com>.

"Climate and the Ocean." Water:Science and Issues. . Encyclopedia.com. (February 24, 2017). http://www.encyclopedia.com/science/news-wires-white-papers-and-books/climate-and-ocean

"Climate and the Ocean." Water:Science and Issues. . Retrieved February 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/science/news-wires-white-papers-and-books/climate-and-ocean

Climate and Food

CLIMATE AND FOOD

CLIMATE AND FOOD. Throughout most of prehistory, humans acquired food by hunting, fishing, gathering, foraging, or scavenging. The animals and plants they consumed were native to the local climate and environment and provided highly variable diets. Arctic and subarctic populations fished, gathered shellfish, and hunted land and sea mammals; temperate forest populations gathered seasonal plants and hunted wildlife; prairie and savanna dwellers hunted and trapped large mammals; and tropical forest dwellers fished, gathered a variety of plant foods, and hunted small mammals. Climatic influences on the flora and fauna included in the local diet were rainfall, temperature, seasonality, and longer-term cooling and warming trends. The most extreme climate changes were the Pleistocene glacial advances and retreats in the northern hemisphere. Climatic variation in temperature and precipitation became central to food procurement when plants and animals were first domesticated about ten thousand years ago at the end of the Pleistocene epoch.

There are only a few small populations that subsist entirely on hunting and gathering of wild plants and animals, although many populations continue to supplement their diets with wild foods. An exception to this is the fish and shellfish that provide substantial amounts of food to people through commercial fishing. Nevertheless, most peoples around the globe consume domestic plants and animals that are grown or raised locally or are produced commercially.

Climate and World Biomes

Climate (general, longer-term) and weather (specific, short-term) tend to structure ecosystems around the world by regulating rates of plant photosynthesis and production and contributing to patterns of vegetation and animal life. The principal factors are temperature, which is largely a function of global latitude and elevation; precipitation, drainage, and stored fresh water resources; windflow, which can dry or chill; solar radiation; and seasonal patterns in all of these, particularly temperature and rainfall. Polar and subpolar ecosystems, which are unsuitable for agriculture, are characterized by cold winters, cool summers, and limited precipitation. Some livestock are kept in polar and mountain ecosystems: llama and alpaca in the Andes, yak in the Himalayas, reindeer in the Arctic. Temperate and subtropical zone ecosystems may have relatively high precipitation, marked seasonality in temperature, and agricultural growing seasons up to six months. Drier temperate continental ecosystems (prairies, steppes) are also highly seasonal in rainfall with cold winters. Relatively dry, temperate zones can be highly productive with the practice of irrigation. Mediterranean ecosystems (including California, Chile, and parts of the Near East) have cool, wet winters and hot, dry summers. Many of the major cereal crops of the world were domesticated in these seasonally dry, temperate, or Mediterranean ecosystems: maize or corn in Middle America, wheat and barley in the Near East, rice in Asia, and sorghum in Africa. Quinoa, a member of the goosefoot family, was domesticated in the cool, seasonally dry reaches of the Andes. Tropical ecosystems have warm temperatures throughout the year but often with seasonality of rainfall. Those ecosystems with limited and seasonal rainfall grade into tropical grazing lands or savanna, while increased rainfall yields forests from sparse woodlands up to densely wooded rainforests. Widespread rainforest agriculture today includes a form of shifting, swidden, or slash-and-burn cultivation. Within each of these broadly-defined ecosystems or biomes, there is considerable variation: variation by season and by year, with inherent risks to livestock and agricultural production. For example, dramatic heat waves or cold periods, droughts, floods, hailstorms, and hurricanes can destroy crops and domestic livestock, producing a loss in food security and even famine. These extreme events have a major impact when they occur in heavily populated areas.

World Biomes and Food Production

Plants and animals were first domesticated in the seasonally dry Mediterranean climate of the Fertile Crescent in the Near East. These farming and livestock practices then spread along the Eurasian east-west axis zone of similar latitude and climate. Most domestic seed plants (e.g., cereals, goosefoots) and pulses (e.g., beans, lentils, grams, peas) were temperate-zone domesticates, whereas some tubers and root crops were domesticated in the tropics (e.g., manioc, yams, taro). With the discovery of the New World by Europeans, many native American foods spread to parts of the Old World: the potato became a staple in temperate zones of Europe and the Himalayas; maize became a staple in the drier African tropics; manioc became a staple in the wetter African tropics. Other New World temperate-zone domesticates, such as chocolate, peanuts, and tomatoes, became favored foods around the globe.

Today, temperate and subtropical agroclimatic zones of the United States, Argentina, Europe, and eastern Asia (China and Japan) still have the highest productivity of domestic grains and livestock that feed a substantial portion of the world. This results from a favorable combination of sophisticated agrotechnology and climate. Figure 1 illustrates how climatic inputs interact with the flows of information and resources in a Western industrialized system of agriculture.

Temperate and subarctic marine biomes are highly productive sources of fish and shellfish, although these food resources are in decline because of effective commercial exploitation by Western nations.

Food Intake and Climate

Some patterns of food intake are indirectly or directly linked to climate. For example, tropical populations are often limited in protein intake. Solomon Katz (1987) noted that this occurs in traditional agricultural populations dependent on grains (maize, rice, sorghum, millet) or tubers (potato, manioc) that are high in calories, but relatively lower in protein. Among tropical forest dwellers, as in the Amazon and the Congo basins, protein must come from fish, insects, some game animals, and plant foods. A direct effect of climate is the high metabolic need for calories in arctic or subarctic zones and temperate zone winters because of increased energy needs for temperature regulation in the cold. Derek Roberts (1978) documented that arctic dwellers have an elevated basal metabolic rate (BMR), which may be adaptive in the cold. Infants who are kept under cool conditions have higher food calorie requirements for normal weight gain than infants kept under warmer conditions. In Western industrialized nations, reduced activity levels during the winter season lead to unhealthy increases in the accumulation of human body fat (and weight) or energy storage. On the other hand, the accumulation of body fat in Ama women who dive for edible seaweed throughout the year allows them to withstand the cold water off the shores of Korea and Japan.

Climate Change and Food Production

An alarming trend that is certain to influence human patterns of food intake is recent climate change. Some variation in weather and climate is normal. Yet within the past 250 years, however, increased atmospheric carbon dioxide (CO2), resulting from fossil fuel combustion, deforestation, and agricultural activities, has led to a "green-house" effect and global warming. A major compilation of research by Houghton and other scientists from the Intergovernmental Panel on Climate Change (IPCC) in 2001 has demonstrated beyond any reasonable doubt that human activities have produced a 1.1°F (0.6°C) rise in average global temperature over the past 150 years (see Figure 2). And by the year 2100, this global temperature is expected to rise another 1.8 to 6.3°F (1.0 to 3.5°C), a change that is greater than any experienced on the globe within the past ten thousand years.

Global warming will have variable effects on local weather and climate that are dependent on latitude, elevation, and geographic location. For example, McCarthy and others (2001) have shown that sea level rise from melting glaciers during the twentieth century has been about 6 inches (15 cm), and a projected rise during the twenty-first century is an additional 18.9 inches (48 cm). This will contribute to a loss of coastal agricultural lands and an increased salinization of water and coastal lands. Influences on agricultural food production are likely to be pronounced. Higher temperatures will cause rises in rainfall and the likelihood of floods in some areas and declines in rainfall and consequent drought in other areas: extremes in weather events (floods, hurricanes, heat waves, droughts) will be more common. Both conditions will lead to crop losses and decreased plant productivity. There will be increased heat stress in livestock leading to lower milk and meat production. At the same time that coastal agricultural and grazing land will be lost to sea level rise and salinization, the human population will continue to increase, putting greater pressure on food resources.

It is estimated that the impacts of global warming will be greatest in those regions of the world such as Asia, Africa, Latin America, and the Pacific Islands, where the adaptive capacity is low and vulnerability is high because of the lack of economic resources. Africa is likely to be especially hard hit because such a large part of its land resources is arid or semi-arid savanna lands. Of the total desertification and degradation around the globe, nearly 30 percent is in Africa. Although the debate continues on whether overgrazing, overpopulation, or warming trends are the cause of desertification, nevertheless, global warming will certainly increase the expanse of dry lands on this continent and elsewhere.

Humans have a remarkable capacity to adapt to change, including climate change, through culture and technology. Global warming and its consequent negative effects on our capacity to produce food will be an unprecedented challenge to this adaptability.

See also Agriculture, Origins of ; Biodiversity ; Food, Future of ; Hunting and Gathering ; Maize ; Potato ; Prehistoric Societies ; Swidden .

BIBLIOGRAPHY

Houghton, J. T., et al., eds. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, U.K.: Cambridge University Press, 2001.

Katz, Solomon H. "Food and Biocultural Evolution: A Model for the Investigation of Modern Nutritional Problems." In Nutritional Anthropology, edited by Francis E. Johnston. New York: Alan R. Liss, 1987.

McCarthy, J. J., et al., eds. Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, U.K.: Cambridge University Press, 2001.

National Research Council. Climate and Food: Climatic Fluctuation and U.S. Agricultural Production: A Report on Climate and Weather Fluctuations and Agricultural Production. Board on Agriculture and Renewable Resources, Commission on Natural Resources, National Research Council. Washington, D.C., National Academy of Sciences, 1976.

Roberts, Derek F. Climate and Human Variability. 2nd ed. Menlo Park, Calif.: Cummings, 1978.

Michael A. Little

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Climate and Food." Encyclopedia of Food and Culture. . Encyclopedia.com. 24 Feb. 2017 <http://www.encyclopedia.com>.

"Climate and Food." Encyclopedia of Food and Culture. . Encyclopedia.com. (February 24, 2017). http://www.encyclopedia.com/food/encyclopedias-almanacs-transcripts-and-maps/climate-and-food

"Climate and Food." Encyclopedia of Food and Culture. . Retrieved February 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/food/encyclopedias-almanacs-transcripts-and-maps/climate-and-food

Climate

CLIMATE

middle eastern climatic conditions vary greatly, depending on the season and the geography.

The Middle East and North Africa are perceived as both homogeneous and intensely arid, but the region is best characterized by its climatic variation. Although the hot arid, or desert, climate predominates in the region, the well-watered highlands of Turkey and the mountains of Iran and Ethiopia are important as sources of the region's major rivers. Climatic variation finds further expression in the temperature regimes of the northern and southern parts of the area. Average July maxima for inland


locations near 30° north latitude are as high as 108°F (42°C), while summer maximum temperatures in northern locations such as Ankara, Turkey, do not exceed 86°F (30°C). Black Sea coastal stations' (e.g., Trabzon, Turkey) average summer maxima may be as low as 79°F (26°C). January average minimum temperatures fall to 50°F (10°C) in Aswan, but reach 10°F (12.5°C) in Erzurum on the Anatolian plateau.


Desert conditions are primarily the result of the subtropical zone of high pressure that coincides with 30° north latitude. In this area, cold, subsiding air warms as it approaches the earth, thus increasing its ability to hold moisture. This results in extreme evaporation from all surfaces, and under such conditions, very little rain falls. During the summer solstice, the sun is directly overhead at 23° 30 at north latitude (e.g., at Aswan, Egypt). Annual periods of high sun in combination with clear skies through much of the year allow intense solar radiation with subsequent extreme evapotranspiration demands.


Evapotranspiration refers to the water needed by vegetation to withstand the energy of incoming solar radiation. This is accomplished through the mechanism of heat transfer by means of evaporation from inert surfaces and transpiration from stomata (pores) on leaf surfaces. Total demands made upon an individual plant are termed potential evapotranspiration (PE). Actual evapotranspi-ration (AE) is the amount of water actually available and used by the plant and reflects climatic conditions rather than optimal plant requirements. The difference between PE and AE defines the degree of aridity or drought and also the amount of irrigation water that would have to be applied for such vegetation to survive.


In the deserts of North Africa and Southwest Africa, total annual precipitation is between 2 inches (50 mm) and 14 inches (350 mm). The area from Aden to Baghdad receives from less than 2 inches (50 mm) annually to about 6 inches (150 mm). More than 39 inches (1 m) of water would be required in those places to sustain rain-fed agriculture. Under such conditions, sparse natural vegetation allows animals some seasonal grazing at best. Hyperarid areas, which seldom if ever receive rain, have no vegetation at all. Rainfall variability within the area of desert climate exceeds 40 percent, reducing to 20 percent on the moist margins of the semiarid zone, which forms a transition between the true desert to the south and the more humid areas farther north.

Precipitation on the semiarid margins of Middle Eastern deserts ranges from 14 inches (350 mm) to 30 inches (750 mm) annually. Dry farming of grains employing alternate years of fallow can be carried out with 16 inches (400 mm) or more of rain. It should be remembered that, while rainfall variability is greatest in the desert, this also means that aridity there has high predictability. Thus, the semiarid transition between regions of predictable aridity and predictable rainfall is one where rain-fed agriculture is possible but has a high chance of failure. This is biblical countryyears of plenty followed by years of famineand one to which pastoral nomadism was a practical adaptation.

The Black Sea coast of Turkey receives from 78 inches (2,000 mm) to 101 inches (2,600 mm) per year, although the transition from the windward, watered side of the Pontic range to the leeward, dry side can be very abrupt due to the topography. The Mediterranean climate, which is limited to a narrow coastal strip reaching from Gaza to Istanbul and from Tunis in the west to the Atlantic, is marked by mild winters with ample rain and long, hot summers when Sahara-like conditions prevail.

Precipitation results from three different processes. Orographic precipitation occurs on the Pontic and Taurus mountains of Turkey; the Elburz and Zagros mountains of Iran; the peaks of Lebanon and the hills of Israel, the West Bank, and Jordan; the highlands of Ethiopia; and the Atlas and Anti-Atlas mountains of northwest Africa. Such precipitation occurs as warm, moisture-bearing winds are forced to higher elevations over the mountains. When the air cools, it loses its ability to hold moisture, and rain or snow falls on the wind-ward sides of those ranges.

The Anatolian plateau and the steppes of northern Syria experience small quantities of rain in the form of convectional summer showers from thunderstorms. Equatorial convectional rains provide the waters of the White Nile.




A third cause of precipitation, particularly in the wintertime, is the passage of frontal systems from west to east across the region bringing alternating high and low pressure cells with associated cold, clear, or moist warm air masses. Frontal systems are propelled eastward by the subtropical jet stream, the position of which varies latitudinally by as much as 15° from a winter position in the north to its summer position in the south. Summer months find the path of the jet stream located from central Turkey northeastward to central Asia. Six months later the jet stream is at its maximum along a path traced across the Gulf of Suez to the head of the Gulf of Aqaba and beyond. This shift accounts for the changes in temperature and precipitation noted above.

Surface winds in the Middle East have distinctive qualities and have received local names famous throughout the region. The cold northern wind blowing from the Anatolian plateau to the southern Turkish shore in the winter is the Poyraz (derived from the Greek: bora, i.e., north); the warm on-shore wind in the same location is known as the meltem. Searing desert winds are infamous: The Egyptian khamsin, which blows in from the desert, is matched by the ghibli in Libya and the simoon in Iran.

Bibliography

Beaumont, Peter; Blake, Gerald H.; and Wagstaff, J. Malcolm. The Middle East: A Geographical Study, 2d edition. New York: Halsted Press, 1988.

Blake, Gerald; Dewdney, John; and Mitchell, Jonathan. The Cambridge Atlas of the Middle East and North Africa. Cambridge, U.K., and New York: Cambridge University Press, 1987.

Goudie, Andrew, and Wilkinson, Jon. The Warm Desert Environment. Cambridge, U.K., and New York: Cambridge University Press, 1977.

Grigg, David. The Harsh Lands: A Study in Agricultural Development. London: Macmillan; New York: St. Martin's, 1970.


John F. Kolars

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Climate." Encyclopedia of the Modern Middle East and North Africa. . Encyclopedia.com. 24 Feb. 2017 <http://www.encyclopedia.com>.

"Climate." Encyclopedia of the Modern Middle East and North Africa. . Encyclopedia.com. (February 24, 2017). http://www.encyclopedia.com/humanities/encyclopedias-almanacs-transcripts-and-maps/climate

"Climate." Encyclopedia of the Modern Middle East and North Africa. . Retrieved February 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/humanities/encyclopedias-almanacs-transcripts-and-maps/climate

Climate

CLIMATE

There are five climates in Russia. The Polar climate hugs the Arctic coast and yields a 60-day growing season, with July and August averaging temperatures over freezing. Tundra vegetation prevails. South of the tundra, blanketing two-thirds of Russia, is the Subarctic climate with its brief cool summers and harsh cold, mostly dry, winters. With a growing season of sixty to ninety days, the dominant vegetation is taiga (northern coniferous forest), 90 percent of which is underlain by permafrost. In European Russia and Western Siberia, the Subarctic climate merges southward with the Humid Continental Warm-to-Cool Summer climate. Here the winters become less harsh, although much snowier, and the summers become longer and warmer. Growing seasons reach 90 to 120 days, and the vegetation is a temperate mixed forest that joins the broadleaf forests and grasslands to the south. Along the Lower Volga and in the North Caucasus, the climate becomes sub-humid. Here summers become equal to winters, a Semiarid Continental climate prevails, the growing season reaches 120 to 160 days, and grassland, or steppe, vegetation dominates. Particular to Russia's "bread-basket," a terrain with rich black loams, this climate suffers from insufficient precipitation. A tiny strip of Arid Continental climate fringes the Russian shoreline of the Caspian Sea. With hot, dry summers and rather cold, shorter winters, this climate yields a 160- to 200-day growing season. A true desert, it reflects a severe soil-moisture deficit.

Russia's massive landmass, northerly location, and flat-to-rolling terrain dramatically influence these climates. Because three-fourths of Russia is more than 250 miles (400 kilometers) away from a largely frozen sea, the climates are continental, not maritime. Continental climates exhibit wide ranges of temperature (the difference between the warmest and coldest monthly averages) and low average annual precipitation that peaks in summer instead of spring. Climatic harshness increases from west to east as the moderating influence of the warm North Atlantic Ocean decreases. St. Petersburg on the Gulf of Finland has a 45° F (25° C) difference between the July and January mean temperatures and 19 inches (48 centimeters) of annual precipitation. Yakutsk in Eastern Siberia contrasts with a 112° F (65° C) range of temperature and only 4 inches (10 centimeters) of precipitation.

Russia's high-latitude position enhances continentality. Nine-tenths of the country is north of 50° N Latitude. Moscow is in the latitude of Edmonton, Alberta; St. Petersburg equates with Anchorage, Alaska. Russia thus resembles Canada in climate more than it does the United States. High-latitude countries like Russia and Canada suffer low-angle (less-intense) sunlight and short growing

seasons that range from 60 days in the Arctic to 200 days along the Caspian shore.

Low relief also augments the negative effects on Russia's climates. Three-fourths of Russia's terrain lies at elevations lower than 1,500 feet (450 meters) above sea level. This further diminishes the opportunities for rain and snow because there is less friction to cause orographic lifting. The country's open western border, uninterrupted except for the low Ural Mountains, permits Atlantic winds and air masses to penetrate as far east as the Yenisey River. In winter, these air masses bring moderation and relatively heavy snow to many parts of the European lowlands and Western Siberia. Meanwhile, a semi-permanent high-pressure cell (the Asiatic Maximum) blankets Eastern Siberia and the Russian Far East. This huge high-pressure ridge forces the Atlantic air to flow northward into the Arctic and southward against the southern mountains. Consequently, little snow or wind affects the Siberian interior in winter. The exceptions are found along the east coast (Kamchatka, the Kurils, and Maritime province).

As the Eurasian continent heats faster in summer than the oceans, the pressure cells shift position: Low pressure dominates the continents and high pressure prevails over the oceans. Moist air masses flow onto the land, bringing summer thunderstorms. The heaviest rains come later in summer from west to east, often occurring in the harvest seasons in Western Siberia. In the Russian Far East, the summer monsoon yields more than 75 percent of the region's average annual precipitation. Pacific typhoons often harry Kamchatka, the Kurils, and Sakhalin Island.

Winter temperatures plunge from west to east. Along Moscow's 55th parallel, average January temperatures fall from a high of 22° F (6° C) in Kaliningrad to 14° F (10° C) in the capital to 7° F (14° C) in Kazan to6° F (20° C) in Tomsk. Along the same latitude in the Russian Far East, the temperatures reach low averages of29° F (35° C). Northeast Siberia experiences the lowest average winter temperatures outside of Antarctica:50° F (45° C), with one-time minima of90° F (69° C).

In July, the averages cool with higher latitudes. Thus, the Caspian desert experiences averages of near 80° F (25° C), whereas the Arctic tundra records means of 40° F (5° C). Moscow averages 65° F (19°C) in July.

See also: geography

bibliography

Borisov, A. A. (1965). Climates of the USSR. Chicago: Aldine Publishing Co.

Lydolph, Paul E. (1977). Climates of the USSR: World Survey of Climatology. Amsterdam: Elsevier.

Mote, Victor L. (1994). An Industrial Atlas of the Soviet Successor States. Houston, TX: Industrial Information Resources.

Victor L. Mote

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Climate." Encyclopedia of Russian History. . Encyclopedia.com. 24 Feb. 2017 <http://www.encyclopedia.com>.

"Climate." Encyclopedia of Russian History. . Encyclopedia.com. (February 24, 2017). http://www.encyclopedia.com/history/encyclopedias-almanacs-transcripts-and-maps/climate

"Climate." Encyclopedia of Russian History. . Retrieved February 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/history/encyclopedias-almanacs-transcripts-and-maps/climate

climate

climate, average condition of the atmosphere near the earth's surface over a long period of time, taking into account temperature, precipitation (see rain), humidity, wind, barometric pressure, and other phenomena.

Primary Influence on Climate

The major influence governing the climate of a region is its latitude. A broad latitudinal division of the earth's surface into climatic zones based on global winds includes the equatorial zone, or doldrums, characterized by high temperatures with small seasonal and diurnal change and heavy rainfall; the subtropical, including the trade-wind belts and the horse latitudes, a dry region with uniformly mild temperatures and little wind; the intermediate, the region of the prevailing westerlies that, because of several secondary influences, displays wide temperature ranges and marked changeability of weather; and the polar, a region of short summers and long winters, where the ground is generally perpetually frozen (see permafrost). The transitional climate between those of the subtropical and intermediate zones, known as the Mediterranean type, is found in areas bordering the Mediterranean Sea and on the west coasts of continents. It is characterized by mild temperatures with moderate winter rainfall under the influence of the moisture-laden prevailing westerlies and dry summers under the influence of the horse latitudes or the trade winds.

Secondary Influences on Climate

The influence of latitude on climate is modified by one or more secondary influences including position relative to land and water masses, altitude, topography, prevailing winds, ocean currents, and prevalence of cyclonic storms. Climatic types combining the basic factor of latitude with one or more secondary influences include the continental and the marine. Except in the equatorial region, the continental type is marked by dry, sunny weather with low humidity and seasonal extremes in temperature; noteworthy are the Sahara and Siberia. Marine climates are characterized by small annual and diurnal temperature variation and by copious rainfall on the windward side of coastal highlands and mountainous islands; notable is the mean annual precipitation of 451 in. (1146 cm) at Mt. Waialeale, Hawaii.

The coastal, or littoral, climate is one in which the direction of the prevailing winds plays a dominant role—the east coasts having generally the heavier rainfall in the trade-wind belts, the west coasts in westerly belts. Both coasts have a climate resembling the continental during the season when the wind is blowing from the interior of the continent. An instance of the coastal type, in which the precipitation is accentuated by the nearness of a mountain barrier, is the west coast of North America from Alaska to Oregon, where the mean annual precipitation averages 80 to 100 in. (203 to 254 cm), almost all of it falling during the winter months. Elevation is the dominant factor in mountain and plateau climates, with the temperature decreasing about 3°F per 1,000 ft (1.7°C per 305 m) of ascent and rainfall increasing with altitude up to about 6000 ft (1829 m), then decreasing with further elevation.

Climatology and Climatic Change

Climatology, the science of climate and its relation to plant and animal life, is important in many fields, including agriculture, aviation, medicine, botany, zoology, geology, and geography. Changes in climate affect, for example, the plant and animal life of a given area. The presence of coal beds in North America and Europe along with evidence of glaciation in these same areas indicates that they must have experienced alternately warmer and colder climates than they now possess.

Despite yearly fluctuations of climatic elements, there has been, apparently, little overall change during the period of recorded history. Numerous climatic cycles (variations in weather elements that recur with considerable regularity) have been claimed to exist, including an 11-year cycle related to sunspot activity. There is currently much concern that human activities are changing the earth's climate in harmful ways. Computer models of climate changes have been developed in recent years; some examine potential parameters that effect global warming or cooling.

Bibliography

See H. H. Lamb, Climate History and the Future (1985); J. R. Herman and R. A. Sun, Weather and Climate (1985).

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"climate." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. 24 Feb. 2017 <http://www.encyclopedia.com>.

"climate." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. (February 24, 2017). http://www.encyclopedia.com/reference/encyclopedias-almanacs-transcripts-and-maps/climate

"climate." The Columbia Encyclopedia, 6th ed.. . Retrieved February 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/reference/encyclopedias-almanacs-transcripts-and-maps/climate

Climate

85. Climate

See also 142. ENVIRONMENT ; 417. WEATHER

climatography
the science of the description of climate. climatographer , n. climatographical , adj.
climatology
the science that studies climate or climatic conditions. climatologist , n. climatologic, climatological , adj.
cryptoclimate
the climate of the inside of a building, airliner, or space ship, as distinguished from that on the outside.
hyetography
the study of the geographical distribution of rainfall by annual totals. hyetographic, hyetographical , adj.
meteorology
the science that studies climate and weather variations. meteorologie, meteorological , adj. meteorologist , n.
microclimatology
1. the study of minute gradations in climate that are due to the nature of the terrain.
2. the study of microclimates or climates of limited areas, as houses or communities. microclimatologist , n. microclimatologic, microclimatological , adj.
phenology
the branch of biology that studies the relation between variations in climate and periodic biological phenomena, as the migration of birds or the flowering of plants. phenologist , n. phenologic, phenological , adj.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Climate." -Ologies and -Isms. . Encyclopedia.com. 24 Feb. 2017 <http://www.encyclopedia.com>.

"Climate." -Ologies and -Isms. . Encyclopedia.com. (February 24, 2017). http://www.encyclopedia.com/education/dictionaries-thesauruses-pictures-and-press-releases/climate

"Climate." -Ologies and -Isms. . Retrieved February 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/education/dictionaries-thesauruses-pictures-and-press-releases/climate

climate

cli·mate / ˈklīmit/ • n. the weather conditions prevailing in an area in general or over a long period: our cold, wet climate. ∎  a region with particular prevailing weather conditions: vacationing in a warm climate. ∎  the prevailing trend of public opinion or of another aspect of public life: the current economic climate. DERIVATIVES: cli·mat·ic / klīˈmatik/ adj. cli·mat·i·cal / klīˈmatikəl/ adj. cli·mat·i·cal·ly / klīˈmatik(ə)lē/ adv. ORIGIN: late Middle English: from Old French climat or late Latin clima, climat-, from Greek klima ‘slope, zone,’ from klinein ‘to slope.’ The term originally denoted a zone of the earth between two lines of latitude, then any region of the earth, and later, a region considered with reference to its atmospheric conditions. Compare with clime.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"climate." The Oxford Pocket Dictionary of Current English. . Encyclopedia.com. 24 Feb. 2017 <http://www.encyclopedia.com>.

"climate." The Oxford Pocket Dictionary of Current English. . Encyclopedia.com. (February 24, 2017). http://www.encyclopedia.com/humanities/dictionaries-thesauruses-pictures-and-press-releases/climate-0

"climate." The Oxford Pocket Dictionary of Current English. . Retrieved February 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/humanities/dictionaries-thesauruses-pictures-and-press-releases/climate-0

climate

climate The characteristic pattern of weather elements in an area over a period. The weather elements include temperature, rainfall, humidity, solar insolation, wind, etc. The climate of a large area is determined by several climatic controls: (1) the latitude of the area, which accounts for the amount of solar radiation it receives; (2) the distribution of land and sea masses; (3) the altitude and topography of the area; and (4) the location of the area in relation to the ocean currents. Weather elements are important abiotic factors.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"climate." A Dictionary of Biology. . Encyclopedia.com. 24 Feb. 2017 <http://www.encyclopedia.com>.

"climate." A Dictionary of Biology. . Encyclopedia.com. (February 24, 2017). http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/climate-1

"climate." A Dictionary of Biology. . Retrieved February 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/climate-1

climate

climate Weather conditions of a place or region prevailing over a long time. The major factors influencing climate are temperatures, air movements, incoming and outgoing radiation and moisture movements. Climates are defined on different scales, ranging from macroclimates, which cover the broad climatic zones of the globe, down to microclimates, which refer to the conditions in a small area, such as a wood or a field.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"climate." World Encyclopedia. . Encyclopedia.com. 24 Feb. 2017 <http://www.encyclopedia.com>.

"climate." World Encyclopedia. . Encyclopedia.com. (February 24, 2017). http://www.encyclopedia.com/environment/encyclopedias-almanacs-transcripts-and-maps/climate-0

"climate." World Encyclopedia. . Retrieved February 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/environment/encyclopedias-almanacs-transcripts-and-maps/climate-0

climate

climate belt of the earth's surface between two parallels of latitude XIV; (region having certain) atmospheric conditions XVII. — (O)F. climat or late L. clīma, clīmat- — Gr. klíma, klímat-, f. *klī́- as in klī́nein slope, LEAN 2.
Hence climatic XIX.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"climate." The Concise Oxford Dictionary of English Etymology. . Encyclopedia.com. 24 Feb. 2017 <http://www.encyclopedia.com>.

"climate." The Concise Oxford Dictionary of English Etymology. . Encyclopedia.com. (February 24, 2017). http://www.encyclopedia.com/humanities/dictionaries-thesauruses-pictures-and-press-releases/climate-1

"climate." The Concise Oxford Dictionary of English Etymology. . Retrieved February 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/humanities/dictionaries-thesauruses-pictures-and-press-releases/climate-1

climate

climate The average weather conditions experienced at a particular place over a long period (usually more than 70 years).

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"climate." A Dictionary of Ecology. . Encyclopedia.com. 24 Feb. 2017 <http://www.encyclopedia.com>.

"climate." A Dictionary of Ecology. . Encyclopedia.com. (February 24, 2017). http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/climate

"climate." A Dictionary of Ecology. . Retrieved February 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/climate

climate

climate The average weather conditions experienced at a particular place over a long period (usually more than 70 years).

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"climate." A Dictionary of Zoology. . Encyclopedia.com. 24 Feb. 2017 <http://www.encyclopedia.com>.

"climate." A Dictionary of Zoology. . Encyclopedia.com. (February 24, 2017). http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/climate-0

"climate." A Dictionary of Zoology. . Retrieved February 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/climate-0

Climate

CLIMATE

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Climate." Science of Everyday Things. . Encyclopedia.com. 24 Feb. 2017 <http://www.encyclopedia.com>.

"Climate." Science of Everyday Things. . Encyclopedia.com. (February 24, 2017). http://www.encyclopedia.com/science/news-wires-white-papers-and-books/climate

"Climate." Science of Everyday Things. . Retrieved February 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/science/news-wires-white-papers-and-books/climate

climate

climatedammit, Hammett, Mamet •emmet, semmit •helmet, pelmet •remit • limit • kismet • climate •comet, grommet, vomit •Goldschmidt •plummet, summit •Hindemith •hermit, Kermit, permit •gannet, granite, Janet, planet •magnet • Hamnett • pomegranate •Barnet, garnet •Bennett, genet, jennet, rennet, senate, sennet, sennit, tenet •innit, linnet, minute, sinnet •cygnet, signet •cabinet • definite • Plantagenetbonnet, sonnet •cornet, hornet •unit •punnet, whodunnit (US whodunit) •bayonet • dragonet • falconet •baronet • coronet •alternate, burnet •sandpit • carpet • armpit • decrepit •cesspit • bear pit • fleapit •pipit, sippet, skippet, snippet, tippet, Tippett, whippet •limpet • incipit • limepit •moppet, poppet •cockpit • cuckoo-spit • pulpit • puppet •crumpet, strumpet, trumpet •parapet • turnspit

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"climate." Oxford Dictionary of Rhymes. . Encyclopedia.com. 24 Feb. 2017 <http://www.encyclopedia.com>.

"climate." Oxford Dictionary of Rhymes. . Encyclopedia.com. (February 24, 2017). http://www.encyclopedia.com/humanities/dictionaries-thesauruses-pictures-and-press-releases/climate

"climate." Oxford Dictionary of Rhymes. . Retrieved February 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/humanities/dictionaries-thesauruses-pictures-and-press-releases/climate