Skip to main content

Fortifications

Fortifications, both permanent and temporary, formed an important element of American military activity as early as the colonial period and remained a highly visible aspect of national defense well into the twentieth century.

A major threat facing isolated coastal communities in colonial times was seaborne attack by European forces. The defensive works built by the colonists were mainly small, primitive attempts to replicate the European bastion‐trace fortification with its prominent corner gun platforms. Most were constructed at the water's edge of port cities, using whatever local materials were available. The American Revolution triggered a revival of local construction, but with little change in either materials or design. Most fortifications built during the Revolutionary War itself were field fortifications rather than permanent works. Classed as either complex entrenchments (with small, reinforced earthen and timber works often connected by ditches to serve as trenches) or hasty entrenchments (the normal ground configuration supplemented by minimal construction), fieldworks also followed European models. Having no indigenous military engineers, the Continental army relied mainly on French‐trained officers, such as Louis La Bèque Duportail and Thaddeus Kosciuszko, for the expertise needed to construct larger works in the field—a tradition that would continue into the nineteenth century.

The emergence of a plausible threat in the 1790s during the French Revolution led to the first of two “systems” of coastal fortifications prior to the War of 1812. The “First System” of 1794 was the initial effort undertaken by the federal government, and it represented a continuation of past practices both in terms of design and materials and in reliance on European engineers (one of whom was Pierre L’Enfant, the future designer of Washington, D.C.). The “Second System” emerged in 1807, also in response to a foreign threat, this time from Britain in the Napoleonic Wars. This system included works built to a novel design advocated by Jonathan Williams, first U.S.‐born chief of the U.S. Army Corps of Engineers. He endorsed the construction of works with high stone or brick walls, the guns arranged in multilevel tiers of internal chambers called casemates, and firing done through iron‐shuttered embrasures piercing the facade. This theory, based on the ideas of a French engineer, the marquis de Montalembert, meant two or three tiers, and thus more guns and greater defensive firepower within the same ground occupied by an older‐style, single‐level fortification.

A handful of American fortifications designed to Williams's ideas, including Castle Williams in New York Harbor, arose before 1812; but the impact of these ideas was far greater in following decades. During the War of 1812, British coastal raids—and the burning of the national capital—persuaded national leaders to establish a board of engineers in 1816 to examine the entire coast and recommend defenses. The Bernard Board Report of 1821, named after French engineer Simon Bernard, was the first comprehensive plan for American coastal defense. It led to construction of the “Third System” of some fifty American coastal forts, almost all of them casemated works built to designs of increasing sophistication.

The leading figure of this program was Joseph G. Totten, an 1805 graduate of West Point and later chief engineer of the U.S. Army 1838–64, the longest tenure of any chief engineer. As important was Dennis Hart Mahan, a professor of engineering at West Point in 1832–71. Basing his ideas on French models, Mahan taught two generations of soldiers Americanized theories of fortification and emphasized the role of field fortifications in actual operations to steady America's partially trained troops and militia. Totten's 1851 report recommended increasing the number of projected coastal fortifications from 50 (in 1821) to 186 (with 28 for the Texas Gulf Coast and the Pacific states). Estimated cost of this increased program was $25 million, with over $20 million already expended.

Coastal fortification planning inevitably touched on naval operations, and in every report the engineers remarked, usually in passing, that the navy was the first line of defense. Since actual invasion was unlikely, the engineers stressed that the proposed fortifications were to protect cities, potential anchorages, and intracoastal navigation routes, as well as to keep blockading vessels at a distance. Confronted by choice of attacking powerful defenses head‐on or landing far from their target, enemy forces might be discouraged from attacking at all. Many critics countered by asserting that fortifications alone were insufficient to protect coastal areas, suggesting various additional floating defenses or technological innovations, such as electrically detonated underwater mines demonstrated by Samuel Colt in the 1840s.

Totten's arguments for the Third System fortifications, though, overlooked the ways the Industrial Revolution was already spawning dramatic changes in artillery and ship design. Fortifications themselves were an evolved technology. In the years shortly before the Civil War, developments in metallurgy and ordnance design led to the production of heavy rifled and shell‐firing guns of enormous power. Previous heavy naval and siege guns fired shot weighing 32 to 48 pounds, the larger guns now possible fired shot weighing up to 100 pounds, with rifled artillery capable of accuracy at three or four times the previous ranges. During the Civil War, such guns, sited by engineer officers like Quincy Gillmore, smashed the thick brick and stone walls of Confederate‐occupied forts like Sumter and Pickens into rubble in hours or days. These developments were paralleled overseas, as was the development of the armored, steam‐powered, oceangoing warship.

By the end of the Civil War, it was clear that the Third System of coastal defenses was obsolete. At the same time, the rival armies learned to construct field fortifications at every opportunity. In some cases—notably the defensive works arrayed around Washington, D.C., ordered by George B. McClellan, or the trench systems created by both sides during the Siege of Petersburg, Virginia—these fieldworks become enormously complex. Built of earth reinforced by heavy timbers, they proved less susceptible to artillery damage than the seacoast fortifications. For more permanent defensive works, however, there was no consensus on a proper design other than returning to lower structures protected by earth. The Indian wars of the late nineteenth century did not provide an answer. The few western forts with walls of any kind generally had palisades of wood that could not resist artillery.

Toward the end of the nineteenth century, gun manufacturers, following William Armstrong in Great Britain, had successfully developed methods of compound manufacture to create increasingly powerful, long‐range cannon. Steel became the predominant material, and most of these new guns were breech‐loading instead of muzzle‐loading, giving them higher rates of fire. Studies suggested new, slower‐burning and more powerful propellants instead of traditional gunpowder. Warships increased in size, armor, and speed. Consequently, many army and navy officers urged improvements in U.S. armaments and urged a program of new coastal fortification. A persistent argument was that coastal defenses were a form of insurance against the destruction resulting from raids to major coastal cities.

In 1885, President Grover Cleveland appointed a board headed by Secretary of War William Endicott to study the issue. The report of January 1886 endorsed much the same kind of system demanded by the engineers, dismissed the idea of a full‐scale invasion, and linked coastal defense to the protection of the commercial metropolises of the seacoasts. It stressed in particular the use of relatively new, and still unproved, technologies such as searchlights, steel breech‐loading cannon on disappearing gun carriages, armor plate, underwater naval mines, and auxiliary vessels, many of which did not yet exist in usable form. At the time, engineers estimated the total cost of the system at around $126 million.

The enormous cost of this effort meant that it was never entirely completed. Moreover, the original proposal underestimated the increasing power and range of artillery, and thus overestimated the number of guns needed. Eventually, some 700 heavy artillery pieces, mostly 8‐, 10‐, and 12‐inch long‐range guns, were emplaced, among them several hundred 12‐inch arching‐fire mortars, along with other hundreds of smaller‐caliber, rapid‐firing guns. The largest guns were capable of firing a 1,000‐pound shell to a range of 7 or 8 miles. These were installed in fortifications that encompassed a series of connected strongpoints and batteries rather than a single, massive structure, dispersed to lessen their vulnerability to naval guns. They were low‐lying, protected by thick berms of earth to absorb heavy, high‐explosive shells, and built to take advantage of ground contours to make them less visible from the ocean. In some cases, older fortifications were rebuilt to accommodate the newer guns; elsewhere the newer works went up in the same general vicinity.

During the Spanish‐American War, despite unfounded fears of coastal raids by Spanish warships that triggered the emplacement of several hundred artillery pieces, no raiders attacked any U.S. cities or harbors. Still, the acquisition of overseas territories during the war, along with the realization of advancing military technology, persuaded President Theodore Roosevelt to create another board, this one headed by Secretary of War William H. Taft, to review the coastal fortification program. Aside from suggesting the need for defenses to guard newly acquired overseas locations such as the Panama Canal, Hawaii, and Manila Bay in the Philippines, the Taft Board limited itself to modifying minor details, reestimating costs, and changing priorities slightly. It concurred with Adm. Alfred T. Mahan (son of Dennis Mahan) that the role of a navy was offensively to seek for command of the sea, not restrict itself to direct coastal defense.

By the outbreak of World War I, moreover, battleship ordnance could once more outrange most of the guns of the shore defenses, with the plunging trajectory of naval shells making open‐topped defensive works untenable. Engineers began siting defenses farther out toward the sea from the locales they defended and pushing development of more powerful 14‐ and 16‐inch guns. Fortifications became ever simpler in design and dispersed over wider areas; 1,000 feet might separate the guns of a single battery. During the 1920s and 1930s, engineers experimented with mobile railroad‐ and tractor‐drawn guns, utilizing war time stocks of 8‐ and 14‐inch guns. Employed as armament in two dozen permanent sites were newly developed 16‐inch guns, which fired a 2,000‐pound shell to a range of 30 miles. The new threat posed by aircraft forced planners to include antiaircraft guns, and led to a design that placed the entire battery structure under up to 30 feet of concrete and earth. The first such structure was erected outside San Francisco between 1937 and 1940, and it became the prototype for the defensive works constructed during World War II. The urgent demand for defenses early in that war could only be met by almost complete standardization into two‐gun batteries, emplaced within concrete bunkers and protected by steel shields. By 1944, however, with no direct threat to American shores, construction ceased.

Field fortifications also changed during World War II, with the complex, continuous trench lines of World War I giving way to small “foxhole” emplacements for individual soldiers and weapons crews, providing greater dispersal and thus survivability from modern ordnance. In both the Korean War and the Vietnam War, in the absence of aerial and armor threat, fixed defenses in the field (around bases and other strongpoints) reappeared to some degree, with works protected by earth or sandbags. Structurally, these were similar to the semipermanent, complex entrenchments of the nineteenth century, albeit with electronic listening devices and mines taking the place of cruder systems of detection and forward protection.

During the Cold War, the greater threat to American cities came from the sky, not the sea. Reliance on coastal fortifications gave way to dependence on antiaircraft guns and missiles and early warning radar networks against bombers and then missiles. The Reagan administration accelerated research on a satellite‐based laser defense system in an attempt to protect the United States against missile attack (the Strategic Defense Initiative). Between 1948 and 1949, nearly all the larger guns of the fortifications were scrapped, marking the end of relying on such fixed defenses for the protection of the American seaboard. In the 1960s, many of the old coastal forts were turned over to the National Park Service.
[See also Battlefields, Encampments, and Forts as Public Sites; Engineering, Military.]

Bibliography

Alex Roland , Underwater Warfare in the Age of Sail, 1978.
Emanuel R. Lewis , Seacoast Fortifications of the United States: An Introductory History, 1970.
Robert S. Browning III , Two If by Sea: The Development of American Coastal Defense Policy, 1983.
Marguerita Z. Herman , Ramparts: Fortifications from the Renaissance to West Point, 1992.

Robert S. Browning III

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Fortifications." The Oxford Companion to American Military History. . Encyclopedia.com. 29 Mar. 2017 <http://www.encyclopedia.com>.

"Fortifications." The Oxford Companion to American Military History. . Encyclopedia.com. (March 29, 2017). http://www.encyclopedia.com/history/encyclopedias-almanacs-transcripts-and-maps/fortifications

"Fortifications." The Oxford Companion to American Military History. . Retrieved March 29, 2017 from Encyclopedia.com: http://www.encyclopedia.com/history/encyclopedias-almanacs-transcripts-and-maps/fortifications

fortification

fortification, system of defense structures for protection from enemy attacks. Fortification developed along two general lines: permanent sites built in peacetime, and emplacements and obstacles hastily constructed in the field in time of war.

Ancient and Medieval Fortifications

As long as weapons remained relatively primitive, permanent fortifications predominated. The art of fortification developed in earliest times with the building of earthworks made up of layers of mud, sticks, rocks, and the like. These soon were developed into walls, then into palisades and elaborate wooden stockades. In the Middle East walled cities appeared very early. Those of Mesopotamia had walls of mud or sun-dried brick built to withstand invaders. The citadel, a fort or fortified section within the city, also appeared early. Phoenician cities were strongly walled and offered sturdy resistance to Assyrian, Persian, and Macedonian attackers. Major developments in permanent fortification were made by the Romans, who constructed walls along the Danube and Rhine and in England (e.g., Hadrian's Wall). Some of these had elaborate systems of watchtowers, with provisions for garrisoning men along the walls. In E Asia the famous Great Wall of China was an even more ambitious undertaking of the same type.

To overcome advances in fortification, siegecraft (see siege) evolved, and devices such as battering rams, scaling ladders, catapults, and movable towers appeared. As siegecraft became more effective, walls were made higher and thicker—often 30 to 40 ft (9.1–12.2 m) thick. The Romans, with their engineering skill, also developed field fortifications in their camps. However, with the breakdown of Roman authority and the increase in raids and incursions by invaders from the North and the East, fortification on the grand scale was largely replaced by local fortifications.

In the Middle Ages, when raids and petty warfare were customary, the typical fortifications were town walls of masonry, great citadels within the cities, and castles. The Crusades helped further the development of fortifications. Similar structures were used in the chaotic warfare of feudal China, India, and Japan. In the West many castles and citadels, notably those of the Moors in Spain, were defensible against all but a long siege.

Effect of Artillery

The development of artillery in the 15th cent. greatly diminished the value of medieval castles. One of the great military problems of the Renaissance and the succeeding centuries was to develop fortifications able to withstand artillery. Moats were deepened to afford greater protection and widened to put artillery at a greater distance. Walls were lowered, thickened, slanted, and rounded to resist projectiles and make them ricochet, and stone bulwarks were thrown up in front of towers and gates. New fortifications, set in ditches, were buttressed to withstand heavy shot, and defensive guns were mounted behind earthen ramparts. In fortifications of towers (roundels) connected by walls (curtains), there were areas that could not be covered by defensive fire from the towers. Hence artillery positions, or bastions, were constructed at angles to the main wall. The proper distribution of bastions became the main preoccupation of military engineers.

The science of military engineering reached a high point in the wars of Louis XIV. Sébastien le Prestre, marquis de Vauban, who worked out fortification and siege methods in the late 17th cent., has perhaps the most illustrious name in the history of fortification. His methods, supported by the work of others such as Menno van Coehoorn, were used for centuries.

Development of Fortress Chains

On the American frontier semipermanent forts and stockades were built in large numbers as garrisons for troops engaged in Indian wars and as refuges for settlers. The Native Americans built forts as well. In Europe the detached fort as a support for outer defense of the fortress chain was introduced to create an entrenched camp between the citadel of the fortress and the outer edges of the defended area. The trend toward spreading the chain of defense (the enceinte) was hastened in the 19th cent. by the development of explosive shells and more effective artillery. In the second half of the 19th cent., lines of smaller forts and entrenched camps, connected by perimeter railroads, were used to encircle cities and guard strategic points on frontiers. Batteries were dispersed, artillery was placed in revolving or disappearing cupolas with subterranean bases, and pillboxes, armed with machine guns, were introduced.

This system was predominant in Europe at the beginning of World War I. However, the Belgian fortresses, which had been thought impregnable, fell with ease to the Germans in 1914, and the ring system of fortification was generally superseded during the war by trench warfare. The resistance of French concrete forts, even to the heaviest fire, seemed to offer a promise of permanent defensive fortification and inspired the construction of the Maginot Line. That elaborate system of pillboxes, forts, and underground communications was constructed at great expense.

Rise of Field Fortifications

At the beginning of World War II, the Maginot Line was quickly outflanked (May, 1940). The development of airpower, heavy artillery, and mechanized warfare further proved the inefficacy of such massive defensive systems and brought them to an end. Despite the value of the German Siegfried Line, which long withstood heavy assault in 1944, and despite the usefulness of the Stalin line in channeling the German attack on Russia, field fortifications predominated over fixed fortifications in World War II. However, underground shelters were used for protection from air attack, and the Germans constructed large concrete shelters to protect submarines in harbor. The Japanese fortified Pacific islands with caves and with simply constructed pillboxes and bunkers. Similar fortifications were used in the Korean and Vietnam wars. The last years of the Korean War were virtually trench warfare. In Vietnam, the Viet Cong perfected underground complexes in the field, whereas the United States built a network of installations and artillery firebases protected by air forces and the usual land defenses.

Bibliography

See Q. Hughes, Military Architecture (1974); M. Brice, Stronghold (1985); C. Duffy, Siege Warfare (2 vol., 1979–85).

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"fortification." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. 29 Mar. 2017 <http://www.encyclopedia.com>.

"fortification." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. (March 29, 2017). http://www.encyclopedia.com/reference/encyclopedias-almanacs-transcripts-and-maps/fortification

"fortification." The Columbia Encyclopedia, 6th ed.. . Retrieved March 29, 2017 from Encyclopedia.com: http://www.encyclopedia.com/reference/encyclopedias-almanacs-transcripts-and-maps/fortification

Fortifications

FORTIFICATIONS

FORTIFICATIONS. Throughout the colonial period, fortifications in the Western Hemisphere strongly reflected the origins of the various European settlers. Colonists


of many countries—including Spain, France, England, Holland, Sweden, and Russia—erected defensive structures ranging from small, improvised earthworks and palisaded stockades to masonry works of substantial size.

As a young nation, the United States faced defensive requirements quite different from those of most European countries, whose chief concern was protection of inland cities against mobilized land forces. The United States, instead, needed to protect frontier settlements and outposts and to secure coastal harbors and river mouths against foreign naval forces.

Americans established frontier forts in large numbers until about the end of the nineteenth century. Built to resist Indians equipped with nothing heavier than small arms, these forts generally consisted of timber or adobe construction. Many modern communities trace their roots back to such frontier posts, which have become crucial to the folklore and romantic history of the American West.

The army, however, directed its principal engineering efforts toward the defense of harbors and river mouths. From the 1790s until after World War II, constructing fortifications for protection against naval attack constituted a major item in the nation's defense expenditures—and the principal representation of the country's military architecture. Among the best known of these fortifications, all completed before the Civil War, were Fort Monroe, Virginia; Fort Sumter, South Carolina; Fort Pulaski, Georgia; Fort Morgan, Alabama; and Fort Jackson, Louisiana.

The appearance of rifled artillery, which had its first widespread test in the Civil War, ended the construction of these massive, vertical-walled masonry forts. The wartime defenses for both North and South were simple, low-profile earthwork forts revested by timber or sandbags. Hundreds of such forts sprang up, in a few cases to ring large cities such as Atlanta, Georgia, and Washington—the one instance in American history of fortifying cities against land attack, somewhat in the fashion of continental Europe.

Following the Civil War, construction of fortifications was limited for a time to new earthwork defenses of a more durable style, although fort armaments developed markedly. In the 1890s a new era of fortification began with the installation of powerful 10-and 12-inch breech-loading rifles, mounted on disappearing carriages that lowered the guns after each firing to protected positions behind many feet of earth and concrete. Along with several hundred 12-inch mortars, which fired projectiles in high arcs to descend onto the decks of naval targets, such armament arrived between 1893 and 1918 in forts along both continental coasts, in the Philippines and the Hawaiian Islands, and at both entrances to the Panama Canal.

Between 1937 and 1945, the country carried out a final fortification effort, characterized by concrete and steel emplacements that provided overhead cover for even more powerful guns of up to 16-inch caliber. Included in the program were defenses for several points in Alaska and in the Caribbean area, as well as for the Atlantic bases acquired from Great Britain in exchange for destroyers. Within five years of the end of World War II, however, the country disarmed and abandoned all such fortifications, which were replaced by newer defense systems utilizing aircraft and guided missiles.

BIBLIOGRAPHY

Lewis, Emanuel R. Seacoast Fortifications of the United States. Washington, D.C.: Smithsonian Institution Press, 1970.

Peterson, Harold. Forts in America. New York: Scribners, 1964.

Robinson, Willard B. American Forts. Urbana: University of Illinois Press, 1976.

Emanuel RaymondLewis/c. w.

See alsoAir Defense ; Army on the Frontier ; French Frontier Forts ; Frontier Defense ; andnames of individual forts.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Fortifications." Dictionary of American History. . Encyclopedia.com. 29 Mar. 2017 <http://www.encyclopedia.com>.

"Fortifications." Dictionary of American History. . Encyclopedia.com. (March 29, 2017). http://www.encyclopedia.com/history/dictionaries-thesauruses-pictures-and-press-releases/fortifications

"Fortifications." Dictionary of American History. . Retrieved March 29, 2017 from Encyclopedia.com: http://www.encyclopedia.com/history/dictionaries-thesauruses-pictures-and-press-releases/fortifications

fortifications

fortifications

Medieval fortifications made siege warfare a costly business during the Middle Ages. Thick vertical walls of stone, raised on high ground and defended by armies of archers and infantry, could protect a city indefinitely while an army had to forage in the surrounding countryside. The innovation of gunpowder and cannon in the fourteenth century turned the tide, however. Although defenders could return fire through gun ports, in time heavy artillery would always crumble high stone walls. A new strategy and design was needed.

To absorb cannon fire, military engineers of the Renaissance tore down the medieval fortifications and rebuilt them with lower walls, protected behind high ramparts of earth. They redesigned forts in a star-shaped pattern, with triangular bastions and ravelins allowing defenders to rake attacking positions from several points at once. Batteries were some distance from the main citadel, in order for cannon within the fort to fire from a forward position and make it more difficult for an attacker to reach the main walls.

Smaller cities surrounded themselves with walls and bastions, and allowed limited access to their streets through heavily defended gates. Larger cities had a series of defensive works, sometimes ranged as far as neighboring towns in the countryside that served as a first line of defense. In the Renaissance, fortifications became so effective that outright military conquest was made nearly impossible for all but the largest armies. Especially in Italy, the Netherlands, and Spain, where heavy fortification was commonplace, war became a tool of last resort, employed only after the failure of negotiation and diplomacy.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"fortifications." The Renaissance. . Encyclopedia.com. 29 Mar. 2017 <http://www.encyclopedia.com>.

"fortifications." The Renaissance. . Encyclopedia.com. (March 29, 2017). http://www.encyclopedia.com/arts/arts-construction-medicine-science-and-technology-magazines/fortifications

"fortifications." The Renaissance. . Retrieved March 29, 2017 from Encyclopedia.com: http://www.encyclopedia.com/arts/arts-construction-medicine-science-and-technology-magazines/fortifications

Fortification

Fortification

Fortification is the addition of nutrients to foods to enhance their nutritional value. Enrichment , on the other hand, is the addition of nutrients to foods to restore nutrients lost during processing. Examples of fortification include the addition of folate and iron to grain products, calcium to juices, iodine to salt, and iron to infant formulas.

Decisions to fortify foods are often population-based to address geographical inadequacies, such as lack of iodine in the soil, or to increase the intake of key nutrients, such as calcium, vitamin A, and vitamin D . Challenges involved in fortification include identifying suitable foods to deliver the nutrients, selecting appropriate forms of the nutrients, designing appropriate processing techniques, and implementing systems to monitor the efficacy of the fortification.

see also Additives and Preservatives; Functional Foods.

M. Elizabeth Kunkel Barbara H. D. Luccia

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Fortification." Nutrition and Well-Being A to Z. . Encyclopedia.com. 29 Mar. 2017 <http://www.encyclopedia.com>.

"Fortification." Nutrition and Well-Being A to Z. . Encyclopedia.com. (March 29, 2017). http://www.encyclopedia.com/food/news-wires-white-papers-and-books/fortification

"Fortification." Nutrition and Well-Being A to Z. . Retrieved March 29, 2017 from Encyclopedia.com: http://www.encyclopedia.com/food/news-wires-white-papers-and-books/fortification

fortification

fortification The deliberate addition of specific nutrients to foods as a means of providing the population with an increased level of intake. Generally synonymous with enrichment, supplementation, and restoration; in the USA enrichment is used to mean the addition to foods of nutrients that they do not normally contain, while fortification is the restoration of nutrients lost in processing. See also wine, fortified.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"fortification." A Dictionary of Food and Nutrition. . Encyclopedia.com. 29 Mar. 2017 <http://www.encyclopedia.com>.

"fortification." A Dictionary of Food and Nutrition. . Encyclopedia.com. (March 29, 2017). http://www.encyclopedia.com/education/dictionaries-thesauruses-pictures-and-press-releases/fortification

"fortification." A Dictionary of Food and Nutrition. . Retrieved March 29, 2017 from Encyclopedia.com: http://www.encyclopedia.com/education/dictionaries-thesauruses-pictures-and-press-releases/fortification

fortification

for·ti·fi·ca·tion / ˌfôrtəˌfəˈkāshən/ • n. (often fortifications) a defensive wall or other reinforcement built to strengthen a place against attack. ∎  the action of fortifying or process of being fortified: the fortification of the frontiers.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"fortification." The Oxford Pocket Dictionary of Current English. . Encyclopedia.com. 29 Mar. 2017 <http://www.encyclopedia.com>.

"fortification." The Oxford Pocket Dictionary of Current English. . Encyclopedia.com. (March 29, 2017). http://www.encyclopedia.com/humanities/dictionaries-thesauruses-pictures-and-press-releases/fortification

"fortification." The Oxford Pocket Dictionary of Current English. . Retrieved March 29, 2017 from Encyclopedia.com: http://www.encyclopedia.com/humanities/dictionaries-thesauruses-pictures-and-press-releases/fortification