Skip to main content
Select Source:

Surveying

SURVEYING

SURVEYING. Using little more than a compass and a 66-foot chain, early American surveyors set out early to chart the United States of America. Surveys determine boundaries, chart coastlines and navigable streams and lakes, and provide for mapping of land surfaces. Much of this work done in the early days of the United States used rudimentary, although not necessarily inefficient, equipment.

For instance, surveyors set a 2,000-mile line for the transcontinental railroad in the 1860s without the benefit of maps, aerial views, or precise knowledge of topographical features. A century later, when surveyors set the line for Interstate 80 using everything their predecessors had not, the route followed the railroad's route almost exactly.

The primary tool used by surveyors in North America from the 1600s through the end of the 1800s was a "Gunter's chain," measuring 66 feet long, usually with 100 swiveled links. A retractable steel tape to replace the chain was patented in 1860 by W. H. Paine of Sheboygan, Wisconsin.

Surveyors relied on the compass to set the direction of their chain. Goldsmith Chandlee, a notable clock and instrument maker, built a brass foundry in Winchester, Virginia, in 1783 and made the most advanced surveying compasses of his day.

The biggest breakthrough in surveying technology came in England in 1773, when Jesse Ramsden invented the circular dividing engine, which allowed the manufacture of precise scientific and mathematical instruments. The first American to develop a capability for the mechanical graduation of instruments was William J. Young. Young built the first American transit in Philadelphia in 1831, replacing the heavier, more inconvenient theodolite, which measures horizontal and vertical angles. The transit has a telescope that can be reversed in direction on a horizontal axis. The transit built by Young differs little from the transit used in the early twenty-first century.

The increased demand for accuracy in railroad construction, civil engineering, and city surveys led to the rapid acceptance of the transit. An influx of tradesmen from the Germanic states in the 1830s and 1840s provided a means of manufacturing precision instruments in volume.

To help with mathematical calculations, surveyors began experimenting with a number of nonelectric calculators, including Thacher's Calculating Instrument, patented in 1881, which was the equivalent of a 360-inch-long slide rule precise to 1:10,000. Slide rules replaced


calculating instruments, calculators replaced slide rules, and computers have replaced calculators.

America's original thirteen colonies, as well as a few states such as Texas and Kentucky, were originally surveyed by metes and bounds, which is the process of describing boundaries by a measure of their length. On 7 May 1785, Congress adopted the Governmental Land Surveys, which provided for the "rectangular system," which measured distances and bearing from two lines at right angles and established the system of principal meridians, which run north and south, and base lines, running east and west.

Under the Northwest Ordinance of 1787, Ohio served as the experimental site for the new public lands surveying system. The lessons learned culminated in the Land Ordinance of 1796, which determined the surveying and numbering scheme used to survey all remaining U.S. public lands.

The first government-sanctioned survey was the Survey of the Coast, established in 1807 to mark the navigational hazards of the Atlantic Coast. Under Superintendent Ferdinand Hassler, the survey used crude techniques, including large theodolites, astronomical instruments, plane table topography, and lead line soundings to determine hydrography. Despite these techniques, the survey achieved remarkable accuracy.

By the time the Coast Survey was assigned to map Alaska's coast, after Alaska was acquired in 1867, technological advancements had provided new kinds of bottom samplers, deep-sea thermometers, and depth lines. A new zenith telescope determined latitude with greater accuracy, and the telegraph provided a means of determining longitudinal differences by flashing time signals between points.

Inland, surveys were more informal. Often under sponsorship from the Army, explorers such as Meriwether Lewis and William Clark, Zebulon Pike, and Stephen H. Long went out on reconnaissance missions, gathering geographic, geologic, and military information.

After the Civil War (1861–1865), westward migration created a need for detailed information about the trans-Mississippi West. Congress authorized four surveys named after their leaders: Clarence King, F. V. Hayden, John Wesley Powell, and George M. Wheeler. In addition to topography and geography, these surveys studied botany, paleontology, and ethnology.

The U.S. Geological Survey was formed in 1879 and began mapping in the 1880s, relying on the chain-and-compass method of surveying. By the early 1900s, surveyors were working with plane tables equipped with telescopic alidades with vertical-angle arcs, allowing lines of survey to be plotted directly from the field. Leveling instruments


have been used since 1896 to set permanent elevation benchmarks.

Aerial photography came into use as a survey tool following World War I (1914–1918), and photogrammetry was widely used by the 1930s. Today, satellites enable surveyors to use tools as sophisticated as the global positioning system (GPS), which can eliminate the need for a line-of-sight survey.

BIBLIOGRAPHY

Cazier, Lola. Surveys and Surveyors of the Public Domain, 1785–1975. Washington, D.C.: U.S. Department of the Interior, Bureau of Land Management, 1993.

Thompson, Morris M. Maps for America: Cartographic Products of the U.S. Geological Survey and Others. Reston, Va.: U.S. Government Printing Office, 1979.

"Virtual Museum of Surveying." Ingram-Hagen & Co.; updated June 2002. Available at http://www.surveyhistory.org

T. L.Livermore

See alsoGeography ; Geological Survey, U.S. ; Geological Surveys, State ; Geology ; Geophysical Explorations .

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Surveying." Dictionary of American History. . Encyclopedia.com. 17 Aug. 2017 <http://www.encyclopedia.com>.

"Surveying." Dictionary of American History. . Encyclopedia.com. (August 17, 2017). http://www.encyclopedia.com/history/dictionaries-thesauruses-pictures-and-press-releases/surveying

"Surveying." Dictionary of American History. . Retrieved August 17, 2017 from Encyclopedia.com: http://www.encyclopedia.com/history/dictionaries-thesauruses-pictures-and-press-releases/surveying

surveying

surveying, method of determining accurately points and lines of direction (bearings) on the earth's surface and preparing from them maps or plans. Boundaries, areas, elevations, construction lines, and geographical or artificial features are determined by the measurement of horizontal and vertical distances and angles and by computations based on geometry and trigonometry.

Types and Branches of Surveying

Hydrographic surveying deals with bodies of water and coast lines, is recorded on charts, and records such features as bottom contours, channels, buoys, and shoals. Land surveying includes both geodetic surveying, used for large areas and taking into account the curvature of the earth's surface (see geodesy), and plane surveying, which deals with areas sufficiently small that the earth's curvature is negligible and can be disregarded. Plane surveying dates from ancient times and was highly developed in Egypt. It played an important role in American history in marking boundaries for settlements; surveying was a profession of distinction—both Washington and Jefferson worked for a time as surveyors. Branches of surveying are named according to their purpose, e.g., topographic surveying, used to determine relief (see contour), route surveying, mine surveying, construction surveying; or according to the method used, e.g., transit surveying, plane-table surveying, and photogrammetic surveying (securing data by photographs).

Instruments and Techniques

In surveying, measurements may be made directly, electronically, by the use of optical instruments, by computations from known lines and angles, or by combination methods. Instruments used for direct linear measurements include the Gunter's chain (known also as the surveyor's chain), which is 66 ft (20 m) long and divided into 100 links; the engineer's chain, 100 ft (30 m) long and also consisting of 100 links; the tape, usually of steel, which has largely superseded chains; and the rod. Tapes and rods made of Invar metal (an alloy of steel and nickel) are used for very precise work because of their low coefficient of thermal expansion. In many situations electronic instruments, such as the geodimeter, which uses light waves, and the tellurometer, which uses microwaves, provide a more convenient and more accurate means of determining distance than do tapes and rods.

The height of points in relation to a datum line (usually mean sea level) is measured with a leveling instrument consisting of a telescope fitted with a spirit level and usually mounted on a tripod. It is used in conjunction with a leveling rod placed at the point to be measured and sighted through the telescope. The transit is used to measure vertical and horizontal angles and may be used also for leveling; its chief elements are a telescope that can be rotated (transited) about a horizontal and about a vertical axis, spirit levels, and graduated circles supplemented by vernier scales. Known also as a transit theodolite, or transit compass, the transit is a modification of the theodolite, an instrument that, in its original form, could not be rotated in a vertical axis. A plane table consists of a drawing board fixed on a tripod and equipped with an alidade (a rule combined with a telescope); it is used for direct plotting of data on a chart and is suitable for rapid work not requiring a high degree of precision.

The stadia method of measuring distance, a rapid system useful in surveying inaccessible terrain and in checking more precise measurements, consists in observing through a telescope equipped with two horizontal cross hairs or wires (stadia hairs) the interval delimited by the hairs on a calibrated stadia rod; the interval depends on the distance between the rod and the telescope.

Surveys based on photographs are especially useful in rugged or inaccessible country and for reconnaissance surveys for construction, mapping, or military purposes. In air photographs, errors resulting from tilt of the airplane or arising from distortion of ground relief may be corrected in part by checking against control points fixed by ground surveys and by taking overlapping photographs and matching and assembling the relatively undistorted central portions into a mosaic. These are usually examined stereoscopically.

Bibliography

See W. H. Rayner and M. O. Schmidt, Fundamentals of Surveying (5th ed. 1969); R. F. Spier, Surveying and Mapping (1970); J. Anderson and E. Mikhail, Introduction to Surveying (1989); F. Bell, Surveying and Setting Out Procedures (1991).

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"surveying." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. 17 Aug. 2017 <http://www.encyclopedia.com>.

"surveying." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. (August 17, 2017). http://www.encyclopedia.com/reference/encyclopedias-almanacs-transcripts-and-maps/surveying

"surveying." The Columbia Encyclopedia, 6th ed.. . Retrieved August 17, 2017 from Encyclopedia.com: http://www.encyclopedia.com/reference/encyclopedias-almanacs-transcripts-and-maps/surveying

Surveying

SURVEYING

SURVEYING. Surveying, initially the geometrical and legal description of local lands and county seats, gained importance throughout the early modern period as legal and economic arguments came to rely on accurate descriptions and, increasingly, on measurement and "plotting." By the late seventeenth century, surveying included the mapping of larger political units; by the eighteenth, military leaders and colonial governors, as well as landed individuals, employed surveyors and cartographers. Techniques and instruments developed throughout the period produced a coherent body of theory and practice used for imperial mapping in the late eighteenth and nineteenth centuries.

At the end of the fifteenth century, surveying consisted largely of written descriptions of fields and estates based on visual inspection of an area. Although landmarks and natural division points were more crucial for determining land ownership, these methods were often accompanied by some sort of measurement. In the first half of the sixteenth century, surveying was often restricted to "viewing" or chain-measuring, and the chain often symbolized the surveyors' profession. As the century progressed, and more standardized techniques of measurement were developed and surveying moved from linear and geometrical methods to those based on angular or trigonometric measurement, surveyors began to produce maps or "plots." Although such advanced mathematical methods were developed by the end of the century, chain-measuring continued to be used into the eighteenth century.

The introduction of triangulation methods, the plane table, and the theodolite, as well as rules of acceptable practice, transformed surveying into an exact art. Leonard Digges's Pantometria (1571), for example, introduced these techniques and instruments into England. Throughout the seventeenth century the new surveying instruments were refined, a number of surveying manuals were published, and surveyors were increasingly trained in mathematics and astronomical techniques. Surveying, unlike mapping on a larger scale or the later colonial and country surveys, such as the Ordnance Survey of Ireland (18241846), did not require longitude and latitude placement, and therefore did not use astronomical observations in order to achieve accuracy.

Part of the transformation in surveying that took place during the early modern period was related to the changing awareness on the part of landowners of the desirability of surveying and mapping their lands. As surveyors gradually convinced their patrons of the utility of scale maps, this cognitive shift led to a cartographic revolution. Carefully measured and drawn maps (as opposed to earlier sketch maps) began to be used by landowners as evidence in court cases, by generals planning their military strategies, and by governors interested in inventories and tax collecting. All of this was symptomatic of the developing map culture, driven in part by the increasing study of geography at schools and universities.

By the end of the early modern period, Europeans were surveying their own lands and the other parts of the world they were conquering. They believed that, through measurement and cartographic depiction, they could control the land and the people who lived there. Only the impressive developments of surveying instruments and techniques, and the conceptual acceptance of the scale map as an objective and controllable representation of the land, made that idea plausible.

See also Astronomy ; Cartography and Geography ; Colonialism ; Earth, Theories of the ; Engineering: Civil ; Exploration ; Landholding ; Mathematics ; Property ; Scientific Instruments ; Taxation .

BIBLIOGRAPHY

Bennett, James A. The Divided Circle: A History of Instruments for Astronomy, Navigation and Surveying. Oxford, 1987.

Kain, Robert J. P., and Elizabeth Baigent. The Cadastral Map in the Service of the State: A History of Property Mapping. Chicago, 1992.

Richeson, Allie Wilson. English Land Measuring to 1800: Instruments and Practices. Cambridge, Mass., 1966.

Lesley B. Cormack

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Surveying." Europe, 1450 to 1789: Encyclopedia of the Early Modern World. . Encyclopedia.com. 17 Aug. 2017 <http://www.encyclopedia.com>.

"Surveying." Europe, 1450 to 1789: Encyclopedia of the Early Modern World. . Encyclopedia.com. (August 17, 2017). http://www.encyclopedia.com/history/encyclopedias-almanacs-transcripts-and-maps/surveying

"Surveying." Europe, 1450 to 1789: Encyclopedia of the Early Modern World. . Retrieved August 17, 2017 from Encyclopedia.com: http://www.encyclopedia.com/history/encyclopedias-almanacs-transcripts-and-maps/surveying

surveying

surveying Accurate measurement of the Earth's surface. It is used in establishing land boundaries, the topography of land forms, and for major construction and civil engineering work. For smaller areas, the land is treated as a horizontal plane. Large areas involve considerations of the Earth's curved shape and are referred to as geodetic surveys.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"surveying." World Encyclopedia. . Encyclopedia.com. 17 Aug. 2017 <http://www.encyclopedia.com>.

"surveying." World Encyclopedia. . Encyclopedia.com. (August 17, 2017). http://www.encyclopedia.com/environment/encyclopedias-almanacs-transcripts-and-maps/surveying

"surveying." World Encyclopedia. . Retrieved August 17, 2017 from Encyclopedia.com: http://www.encyclopedia.com/environment/encyclopedias-almanacs-transcripts-and-maps/surveying

surveyor

sur·vey·or / sərˈvāər/ • n. a person who surveys, esp. one whose profession is the surveying of land. ∎  a person who investigates or examines something, esp. boats for seaworthiness: a marine surveyor. DERIVATIVES: sur·vey·or·ship / ship/ n.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"surveyor." The Oxford Pocket Dictionary of Current English. . Encyclopedia.com. 17 Aug. 2017 <http://www.encyclopedia.com>.

"surveyor." The Oxford Pocket Dictionary of Current English. . Encyclopedia.com. (August 17, 2017). http://www.encyclopedia.com/humanities/dictionaries-thesauruses-pictures-and-press-releases/surveyor-1

"surveyor." The Oxford Pocket Dictionary of Current English. . Retrieved August 17, 2017 from Encyclopedia.com: http://www.encyclopedia.com/humanities/dictionaries-thesauruses-pictures-and-press-releases/surveyor-1

Surveyor

Sur·vey·or / sərˈvāər/ a series of unmanned U.S. spacecraft sent to the moon between 1966 and 1968, five of which successfully made soft landings.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Surveyor." The Oxford Pocket Dictionary of Current English. . Encyclopedia.com. 17 Aug. 2017 <http://www.encyclopedia.com>.

"Surveyor." The Oxford Pocket Dictionary of Current English. . Encyclopedia.com. (August 17, 2017). http://www.encyclopedia.com/humanities/dictionaries-thesauruses-pictures-and-press-releases/surveyor-0

"Surveyor." The Oxford Pocket Dictionary of Current English. . Retrieved August 17, 2017 from Encyclopedia.com: http://www.encyclopedia.com/humanities/dictionaries-thesauruses-pictures-and-press-releases/surveyor-0

Surveyor

Surveyor A series of NASA lunar lander missions that ran from 1966 to 1968.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Surveyor." A Dictionary of Earth Sciences. . Encyclopedia.com. 17 Aug. 2017 <http://www.encyclopedia.com>.

"Surveyor." A Dictionary of Earth Sciences. . Encyclopedia.com. (August 17, 2017). http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/surveyor

"Surveyor." A Dictionary of Earth Sciences. . Retrieved August 17, 2017 from Encyclopedia.com: http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/surveyor

surveyor

surveyorabaya, betrayer, conveyor, Eritrea, flayer, Freya, gainsayer, layer, Malaya, Marbella, Maya, Mayer, Nouméa, obeyer, payer, player, portrayer, prayer, preyer, purveyor, slayer, sprayer, stayer, strayer, surveyor, waylayer, weigher •tracklayer • bricklayer • minelayer •record-player • taxpayer • ratepayer •naysayer • soothsayer • crocheter

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"surveyor." Oxford Dictionary of Rhymes. . Encyclopedia.com. 17 Aug. 2017 <http://www.encyclopedia.com>.

"surveyor." Oxford Dictionary of Rhymes. . Encyclopedia.com. (August 17, 2017). http://www.encyclopedia.com/humanities/dictionaries-thesauruses-pictures-and-press-releases/surveyor

"surveyor." Oxford Dictionary of Rhymes. . Retrieved August 17, 2017 from Encyclopedia.com: http://www.encyclopedia.com/humanities/dictionaries-thesauruses-pictures-and-press-releases/surveyor