Skip to main content
Select Source:

Ramón Y Cajal, Santiago

RAMóN Y CAJAL, SANTIAGO

(b. Petilla de Aragón, Spain, 1 May 1852; d. Madrid, Spain, 18 October 1934)

neuroanatomy, neurohistology.

Santiago Ramón y Cajal was born in a poverty stricken and isolated village in Navarre, the son of Justo Ramón y Casasús, a barber-surgeon who some years later—by hard work and considerable sacrifice—acquired a medical degree, and of his wife Antonia. Ramón y Cajal has left us a very full autobiographical record. His early educational experiences were troubled. An interest in art displeased his authoritarian father, who decreed that his son study medicine. The son, predictably, became totally unamenable to any sort of discipline and showed contempt for his teachers and for the whole educational process. Eventually, and possibly aided by enforced apprenticeship to a barber and then to a shoemaker, he acquired sufficient formal learning to enable him to begin the study of medicine at the University of Zaragoza, from which he graduated in 1873. He then joined the army medical service and in the following year was sent to Cuba. There he contracted malaria and within twelve months had to be discharged from the service and sent back to Spain.

Ramón y Cajal determined on an academic career—anatomy was the only subject of his medical course in which he showed any real interest or ability—and spent a further two years at Zaragoza studying for his doctorate. In 1883 he was appointed to the chair of anatomy at Valencia, having in the meanwhile made himself, virtually without aid, a highly competent microscopist and histologist. He had also, while convalescing from tuberculosis, become a skilled photographer. In 1887 Ramón y Cajal was appointed to the chair of histology at Barcelona and, in 1892, to the chair of histology and pathological anatomy at Madrid, which he held until his retirement in 1922.

Cajal was the recipient of numerous prizes, honorary degrees, and distinctions, both Spanish and foreign. In 1894 he was invited to give the Croonian lecture to the Royal Society, and in 1899 he was special lecturer at Clark University, Worcester, Massachusetts. He was elected a foreign member of the Royal Society in 1909. In 1906 he shared the Nobel prize for physiology or medicine with Golgi. He married Silveria Fanañás Garcia in 1880; they had four sons and four daughters.

The picture of Ramón y Cajal that emerges from his own writings is full and candid. Interested in things rather than people, dedicated to neurohistology to the point of obsession, and prepared to submit his wife and family, at least in the earlier years, to considerable hardship while he financed his own laboratory and publications, Ramón y Cajal appears as proud, ashamed of his country’s administrative inefficiency, corruption, and scientific backwardness, ambivalent in that he recognized the need to publish in one of the major scientific languages of Europe, but resented foreign ignorance of the language of Cervantes, and intensely patriotic and determined that Spain should have a place on the scientific and intellectual stage. He succeeded in founding a Spanish school of histology, and his many distinguished pupils included P. del Rio-Hortega, F. de Castro, and R. Lorente de Nó.

In the course of more than half a century from 1880, Ramón y Cajal published numerous scientific papers and an imposing number of books. In the twenty years of his most intense activity, 1886–1906, he may be said to have laid the histological foundations of our present knowledge of the nervous system. He came to study the subject partly because he was systematically teaching himself the whole of histology, but partly also because he saw in the fine structure of the nervous system the material basis of thought and in the elucidation of that structure the answer to many of the problems of physiology and psychology.

Ramón y Cajal found that there was no clear notion of something so fundamental as how a sensory impulse was conducted to a motor fiber, since contemporary histological technique apparently was incapable of defining the course of nerve-cell processes in the gray matter of the central nervous system and, hence, the relationship of one nerve cell to another. He solved this problem by adopting Golgi’s then largely unknown potassium dichromate-silver nitrate technique and applying it to thick sections of embryonic, as opposed to adult, material. The majority of neurologists at this time believed in the reticular theory of nervous interconnection, the only prominent dissentients being His and Forel. Schäfer’s work on Medusa, published in 1878, seems to have been completely ignored.

Ramón y Cajal established first that axons end in the gray matter of the central nervous system in a number of different ways, but always independently and never so as to form a network with other axon terminals. He showed next that although these terminals were in close contact with the dendrites and cell bodies of other nerve cells, there was no physical continuity between one such cell and another. He thus confirmed what had been tentatively suggested by His and by Forel: that the nervous system was an agglomeration of discrete and definable units. The implications for theories of nervous function of such a structural scheme—the neuron doctrine, as it came to be known —are of course profound. It becomes possible to imagine much more clearly the existence of distinct functional pathways, in that a group of axons may be shown to terminate around one group of nerve cells and not another, instead of losing their identity in a reticulum. On the other hand, it poses acutely the problem of how “information” is passed across anatomical “gaps”—synaptic transmission in other words. Ramón y Cajal’s studies at this time, mainly on the cerebellum, spinal cord, retina, and olfactory mucosa, also convinced him of the truth of what he called the “theory of dynamic polarization”: that the transmission of the nerve impulse is always from dendrites and cell body to axon.

Ramón y Cajal’s success in delineating nerve cells all the way to the termination of their finest processes had already enabled him—for example, in the cerebellum and spinal cord—to classify neurons according to the form and direction taken by those terminal fibers. In 1897–1900, having adopted Ehrlich’s methylene blue stain in addition to Golgi’s, he extended his studies to the human cerebral cortex, where he was able to demonstrate the terminal arborizations of the afferent sensory fibers. He again described and classified the various types of neurons in such a way, he believed, as to permit the ascribing of specific structural patterns to different areas of the cortex; hence he was able to place the concept of cerebral localization on firm histological foundations. His descriptions of the cerebral cortex are still the most authoritative.1 They led to the cytoarchitectonics of W. Campbell, K. Brodman, the Vogts, and later workers. Ample tribute has also been paid to the continuing value of his work on the cerebellum.2

If the cell body itself was concerned with conduction rather than, or as well as, mere nutrition, then a knowledge of its fine structure was obviously of importance. Neurofibrils had been described, but their staining was a highly uncertain business. In his autobiography Ramón y Cajal describes how in 1903 he discovered the reduced silver nitrate method for displaying these structures. Although he does not say so, his photographic expertise may well have been a subconscious factor.

In 1904 Ramón y Cajal published Textura del sistema nervioso del hombre y de los vertebrados, in which he brought together the results of the previous fifteen years and which must rank as a classic of medical science. This massive work, more than any other, contains the cytological and histological foundations of modern neurology, yet structural detail is seen never as an end in itself but only as a preliminary to the answering of three questions: What is the functional meaning of this pattern? How does it work? By what physicochemical processes has it reached its present state across the paths of phylogenetic and ontogenetic history?

Ramón y Cajal next turned his attention to the problem of traumatic degeneration and regeneration of nervous structures. He did this in response to what he considered a dangerous revival of the reticularist theory. The main facts had not been in dispute since the work of Waller, Rainier, and others nearly half a century earlier; but there were two schools of thought about precisely how the degenerated peripheral end of the cut axon was restored to structural and functional continuity with its nerve cell. The polygenesists, who earlier had included E. F. A. Vulpian and C. E. Brown-Séquard and whose leader at the time was A. T. J. Bethe, maintained that the regenerated peripheral fibers were the result of progressive transformation and eventual fusion of the Schwann cells which had sheathed the degenerated fibers. The monogenesists, to whom Ramón y Cajal belonged, said that the regenerated fibers were the result of sprouting from the cylinders of the central stump, still in continuity with their nerve cells, and saw their opponents as reviving the reticular theory of nerve continuity in thinly disguised form. Ramón y Cajal, using his reduced silver nitrate method of staining, fully confirmed the monogenesist theory. The results of these researches were collected and published in 1913–1914 as Estudios sobre la degeneración y regeneración del sistema nervioso, still the fullest account of the subject.

Ramón y Cajal had always felt isolated from the mainstream of science, living in Spain and publishing almost exclusively in Spanish; and his isolation was increased by World War I. Nevertheless he continued to publish papers. The most important work of his later years centered on his discovery in 1913 of the gold sublimate method which he applied to the staining of neuroglia, first described by Virchow3 and until recently believed to be merely a supporting skeleton for the nervous elements. This work did much to lay the foundation of current knowledge of the pathology of tumors of the central nervous system.

After formal retirement Ramón y Cajal remained director of the institute which the government had erected and named for him; he also continued to work with the tirelessness and patience which had characterized his adult life.

NOTES

1. See Edwin Clarke and C. D. O’Malley, The Human Brain and Spinal Cord, 446.

2. John C. Ecclcs, Masao Ito, and János Szentagothai, The Cerebellum as a Neuronal Machine (Berlin Heidelberg-New York, 1967), 2.

3. See Clarke and O’Malley, op. cit., 84.

BIBLIOGRAPHY

I. Original Works. The foreign student of Ramón y Cajal’s original work faces certain difficulties. He wrote some 20 books and 250 scientific papers. Many of his earlier papers were published in Boletin médico valenciano, Gaceta médica catalana and Gaceta sanitaria Barcelona which outside Spain are likely to be found only in the largest and best-equipped medical libraries. Of the early numbers of Revista trimestral de histologca normal y patoldgica financed and largely written by Ramón y Cajal himself, only 60 copies were published and have long ranked as rarities. He himself reckoned that less than one third of his output had been read by foreign scientists. Only 800 copies of his magnum opus, Textura del sistema nervioso del hombre y de los vertebrados, , 3 vols. (Madrid, 1894–1904), were printed. Most workers must use the French trans., altered and brought up to date by L. Azoulay, Histologie du système nerveux de l’homme et des vertébrés, 2 vols. (Paris, 1909). His Estudios sobre la degeneratión y regeneración del sistema nervioso, 2 vols. (Madrid, 1913–1914), was translated into English and edited by Raoul M. May as Degeneration and Regeneration of the Nervous System, 2 vols. (London, 1928).

Of great value and interest for the light they shed on Ramón y Cajal’s personality are Reglas y consejos sobre investigación scientifica, 7th ed. (Madrid, 1935), based on Ramón y Caja’s inaugural address following his election to the Royal Academy of Sciences in Madrid, translated by J. M. Sánchez-Pérez and edited and annotated by Cyril B. Courville, as Precepts and Counsels on Scientific Investigation (Mountain View, Calif., 1951); and Recuerdos de mi vida, 2 vols. (Madrid, 1901–1907), translated (with some abridgment) by E. Horne Craigie with the assistance of Juan Cano, as Recollections of My Life in Memoirs of the American Philosophical Society, 8 (1937), repr. as a book (Cambridge, Mass.-London, 1966). These books contain much good advice; they also exhibit a characteristically late nineteenth-century attitude to science, and a worship of “hard facts” which many no longer find congenial, together with a moralizing on science and scientists which reads less well when one bears in mind the polemical tone of some of Ramón y Cajal’s scientific polemical tone of some of Ramdn y Caja’s scientific papers. For his general outlook on life see Charlas de café; pensiamentos anécdotas y confidencias, por S. R. Cajal (Madrid, 1920), parts of which are trans, in The World of Ramón y Cajal with selections from his non-scientific writings, E. Horne Craigie and William C. Gibson, eds. (Springfield, III., 1968), and El mundo visto a las ochenta años. Impresiones de un arteriosclerótico, 2nd ed. (Madrid, 1934).

Ramón y Cajai’s Croonian Lecture, “La fine structure des centres nerveux” is in Proceedings of the Royal Society of London, 53 (1894), 444–468. A number of his most important papers have been translated into English: “Estructura del asta de Ammion y fascia dentada” in Anales de la Sociedad española de historia natural, 22 (1893), 53–114, translated by Lisbeth M. Kraft as The Structure of Ammon’s Horn (Springfield, III.. 1968); and four papers on the limbic cortex in Trabajos del Laboratorio de investigaciones biológicas de la Universidad de Madrid, 1 (1901–1902), 1, 141, 159, 189, translated by Lisbeth M. Kraft as Studies on the Cerebral Cortex [with Limbic Structures] (London, 1955). His work on the development of various nervous structures, published intermittently over a long period, was collected and translated into French as Études sur la neurogenèse de quelques vertébrés (Madrid, 1929); this French text was translated into English by Lloyd Guth as Studies on Vertebrate Neurogenesis (Springfield, Ill. 1960). Studies on the Diencephalon, compiled and translated by Enrique Ramon-Moliner (Springfield, III., 1966), is an anthology of papers and chapters, including some from the Histologie du système nerveux. Similarly, The Structure of the Retina, Sylvia H. Thorpe and Mitchell Gluckstein, trans. and eds. (Springfield, III., 1972), is based on three texts: “La rétine des vertebres,” in Cellule, 9 (1892) 121–246; the German trans. by R. Greeff, Die Retina der Wirbeltiere (Wiesbaden, 1894); and Ramón y Cajal’s revision of his original article in Travaux du laboratoire des recherches biologiques de l’université de Madrid, 28 (1933).

Ramón y Cajal’s address on receipt of the Nobel prize and useful biographical information are in Nobel Lectures Including Presentation Speeches and Laureates’ Biographies. Physiology or Medicine, 1901–1921 (Amsterdam-London-New York, 1967), 220–267. Not long before he died, Ramón y Cajal published “Neuronismo o reticularismo?” in Archivos de neurobiologia, 13 (1933), 217–291, 579–646, translated by M. Ubeda Purkiss and Clement A. Fox as Neuron Theory or Reticular Theory? Objective Evidence of the Anatomical Unity of Nerve Cells (Madrid, 1954). Translated excerpts from his writings in historical context are Edwin Clarke and C. D. O’Malley, The Human Brain and Spinal Cord (Berkeley-Los Angeles, 1968).

II. Secondary Literature. A. D. Loewy, “Ramón y Cajal and Methods of Neuroanatomical Research,” in Perspectives in Biology and Medicine, 15 (1971), 7–36; F. H. Garrison, “Ramón y Cajal,” in Bulletin of the New York Academy of Medicine, 5 (1929), 483–508; W. C. Gibson, “Santiago Ramón y Cajal (1852–1934),” in Annals of Medical History, n.s. 8 (1936), 385–394; and C. S. Sherrington, in Obituary Notices of Fellows of the Royal Society of London, 1, no. 4 (1935), 425–441.

Douglass W. Taylor

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Ramón Y Cajal, Santiago." Complete Dictionary of Scientific Biography. . Encyclopedia.com. 24 Sep. 2017 <http://www.encyclopedia.com>.

"Ramón Y Cajal, Santiago." Complete Dictionary of Scientific Biography. . Encyclopedia.com. (September 24, 2017). http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/ramon-y-cajal-santiago-0

"Ramón Y Cajal, Santiago." Complete Dictionary of Scientific Biography. . Retrieved September 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/ramon-y-cajal-santiago-0

Ramón y Cajal, Santiago

Santiago Ramón y Cajal (säntyä´gō rämōn´ ē kähäl´), 1852–1934, Spanish histologist. He was a university professor at Valencia (1881–86), at Barcelona (1886–92), and at Madrid (1892–1922), where he founded the Cajal Institute. He described the terminal branchings of neurons, devised a method of staining nerve tissues, and made numerous discoveries in the structure of the nervous system. For this work he shared with Camillo Golgi the 1906 Nobel Prize in Physiology or Medicine. His works include Studies of the Degeneration and Regeneration of the Nervous System (tr. 1928) and the classic Histology (tr. 1933).

See his autobiography (tr. 1937, repr. 1966); biography by D. F. Cannon (1949).

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Ramón y Cajal, Santiago." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. 24 Sep. 2017 <http://www.encyclopedia.com>.

"Ramón y Cajal, Santiago." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. (September 24, 2017). http://www.encyclopedia.com/reference/encyclopedias-almanacs-transcripts-and-maps/ramon-y-cajal-santiago

"Ramón y Cajal, Santiago." The Columbia Encyclopedia, 6th ed.. . Retrieved September 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/reference/encyclopedias-almanacs-transcripts-and-maps/ramon-y-cajal-santiago

Cajal, Santiago Ramón y

Santiago Ramón y Cajal: see Ramón y Cajal.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Cajal, Santiago Ramón y." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. 24 Sep. 2017 <http://www.encyclopedia.com>.

"Cajal, Santiago Ramón y." The Columbia Encyclopedia, 6th ed.. . Encyclopedia.com. (September 24, 2017). http://www.encyclopedia.com/reference/encyclopedias-almanacs-transcripts-and-maps/cajal-santiago-ramon-y

"Cajal, Santiago Ramón y." The Columbia Encyclopedia, 6th ed.. . Retrieved September 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/reference/encyclopedias-almanacs-transcripts-and-maps/cajal-santiago-ramon-y

Ramón y Cajal, Santiago

Ramón y Cajal, Santiago See Golgi, Camillo
.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Ramón y Cajal, Santiago." A Dictionary of Biology. . Encyclopedia.com. 24 Sep. 2017 <http://www.encyclopedia.com>.

"Ramón y Cajal, Santiago." A Dictionary of Biology. . Encyclopedia.com. (September 24, 2017). http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/ramon-y-cajal-santiago

"Ramón y Cajal, Santiago." A Dictionary of Biology. . Retrieved September 24, 2017 from Encyclopedia.com: http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/ramon-y-cajal-santiago