Skip to main content
Select Source:

Epidemics

Epidemics


From the onset of the statistical era (which began around 1840 in Britain and the United States) until the present time, roughly half the world's population were (and are) infants and children under the age of fifteen. This must also have been the situation among all humankind before 1840. In the eighteenth century in the West, in those regions for which some crude figures exist, such as Massachusetts, Britain, the core lands of modern France, Sweden, and the German lands, it can be said with some confidence that life expectancy at birth occasionally touched forty years but even there it was generally less. Given that measles and several other epidemic diseases tended to target people under fifteenhalf of the populationit follows that they had a very large clientele to work on.

An endemic disease is one that is continuously present in any given population in nascent form. Its rate of occurrence as an illnesswhich is to say, its prevalencemay differ according to the season of the year and other variables, but its causal agent is almost always found within the locality. Heading the list of today's endemic, or always present, child killers are the water-borne ailments collectively known as dysentery and the diarrheal diseases. In contrast, an epidemic disease, such as smallpox in its most virulent forms (extinct since 1977 in its free-ranging state) or measles (which still exists), only occasionally attacked any given human population. The disease agents, or pathogens, which had the potential to periodically set this sort of epidemic in motion almost always came in from outside the place in which victims lived.

Smallpox

Unlike a dread disease such as bubonic plague (essentially a disease of rats and other rodents), smallpox had no nonhuman host. Thus, over time it was vital to the perpetuation of the smallpox variola that it not kill off all its child hosts. If it did, the children would not be there in a few years, in their capacity as sexually mature adults, producing children of their own, who in turn could host the variola. Without hosts, the variola would become extinct.

It is essential to understand that the causal agents of infectious disease are living things that have the potential to change their forms over time. These mutations make their presence felt in the altered way the disease makes its presence felt among humankind.

In the case of smallpox as it affected populations in western Europe and the Middle East before around 1650, it was most commonly a benign endemic disease that did not kill its victims. Aside from sickly infants, who in any case could not be expected to live, pre-1650s smallpox neither killed nor scarred nor blinded nor neutered its victims. It was in this benign form that smallpox first entered the medical record.

Writing in Baghdad before 925 c.e., the Persian physician-philosopher Abu-Bakr al-Razi reported that smallpox was a common disease which most Middle Eastern children underwent with no ill effects. Al-Razi noticed that the illness never struck the same person twice. Nearly 700 years later, this was apparently still the situation in the British Isles. William Shakespeare, who died in 1616, in his many sonnets in praise of beautiful young men and women nowhere mentioned the threat of disfigurement or death from the disease. Thus, before 1616, it would appear that rampaging lethal smallpox was still unknown in England.

Opinions are divided about when and where the variola virus of smallpox first changed into its violently nasty forms. On the one hand, many historians argue that the Spanish, Genoese, and other European adventurers who went to the Caribbean Islands in the New World in and after 1518 were responsible. Having acquired smallpox immunity by hosting a benign case of the disease in their infancy at home, they brought forms of smallpox with them that, when let loose, quickly changed into lethal forms that killed millions of non-immune Native Americans who had never before been exposed to smallpox. If these eventsso catastrophic from the First Nation point of viewactually happened, it can be suggested that disease mutation may have first occurred in the New World.

Or it may have already happened in parts of sub-Saharan Africa, or in Bengal, in northeastern India. In both regions, sometime before medically aware European observers came on the scene in the late seventeenth century, village curers recognized that some cases of smallpox were now lethal. They also observed that little children who survived a bout of the disease in any of its forms were immune to further attacks. Putting two and two together, they devised the control technique known as inoculation.

In this process, a curer took a bit of a smallpox scab from a moderately sick child, diluted it, and then scratched it into the skin of the child being inoculated. The curer and the parents realized that this process was not risk free, yet they continued to use it. In the 1870s it was found that more than eighty percent of the Bengali men who were imprisoned in government jails in that province had already been inoculated.

The processes of inoculation first described by Western observers in Bengal in the late seventeenth century were also being commonly used at that time in parts of West Africa, from whence they were brought to the New World. In 1706, the slave Onesimus taught his master, the Reverend Cotton Mather of Old North Church, Boston, the mysteries of smallpox prevention through inoculation. In earlier years, between 1620 and 1700, Massachusetts had been blessed by an exceptionally benign disease environment and a low infant mortality rate that had allowed far more babies to survive to adulthood than was the case in the middle colonies and in Europe. However, in the years just before 1706, Old World diseases, including smallpox, had begun to strike youthful New Englanders. For this reason, Mather was atypically willing to listen to what his African dependent said and to put it into practice. He had the children in his immediate circle inoculated and encouraged his friends to follow suit.

Massachusetts-style inoculation against smallpox caught on in the New England colonies and in some of the more smallpox-prone parts of Europe. Thus in authoritarian Sweden, the central government gradually realized that if smallpox were allowed to rage among its infants unchecked the country would be in danger of being depopulated. During bad periods, such as the years between 1779 and 1782, nearly a fifth of all deaths were from smallpox; most of the victims were children under the age of nine. Aware of this, the Swedish government strongly encouraged parents to have their offspring inoculated.

Among western Europeans and European-Americans, inoculation processes may have turned the tide against smallpox, even before the immunization process known as vaccination was devised by Edward Jenner in the late 1790s and put into common use early in the next century.

Measles

At the opening of the twenty-first century, twenty-five years after smallpox was abolished in its free-ranging state worldwide, measlesan air-borne viruscontinues to kill one million children each year and to make an additional 42 million seriously ill. First tentatively identified as a separate disease by the Persian philosopher-physician al-Razi in the tenth century, measles today is most common among the third of the world's children who are chronically malnourished and who live in the non-West.

In addition to children with an unfavorable nutritional status, young children living in large families are also much more prone to being infected with measles than are children living in families with one or two siblings. Nowadays, when the total population of most western European countries is rapidly shrinking due to the limitation of family size, and at a time when most European and European-American parents have their children immunized against all common infectious diseases, measles has become rare in the West. This means that it has become one of the many infectious diseases most commonly found in the non-West. Its non-Western survivors, their immune systems weakened through a bout with the disease, often fall prey to pneumonia.

Bubonic Plague

From 1348 through 1351, western Europe and Egypt were ravaged by a terrible disease, which killed between a quarter and a third of the population. The first great onslaught was called the Black Death. In Europe visitations of what used to be regarded as the same disease (at the time there were no means for identifying disease agents) recurred until the late seventeenth century. In western Europe, the last major out-break was imported into Marseilles, France, in 1721 by a rogue ship coming from the Orient.

Conventional scholarship once held that humans who survived one attack of the bubonic plague did not develop immunity against a subsequent attack. Conventional scholarship also held that bubonic plague did not necessarily target children. Given that roughly half of the population in any place was under the age of fifteen, one could expect that roughly half the victims of the disease would be non-adults. However, according to Samuel K. Cohn Jr. (2002), the late medieval plagues that repeatedly hit western Europe after 1351 directed their attention primarily against children; children who survived acquired life-time immunity.

Given that these events happened before the advent of modern laboratory medical science and before the statistical age, we have no sure way of knowing just what disease agents were actually at work in Europe between 1347 and 1721. In time, new scholarship may permit the writing of comparative studies based on findings from the non-West. It is already clear, however, that the Bubonic plague that continued to kill people in Egypt until 1844 was the same as, or closely related to, modern laboratory-certified Bubonic plague.

Poliomyelitis

Much more certain is our knowledge of the so-called summer plague, more usually known as poliomyelitis or infantile paralysis. In the summer of 1916, several thousand middle-class children in New York City and the surrounding region were struck with a strange new disease. Although outright death was rarebecause hospital care was availablemany survivors were left severely crippled in their legs and unable to walk. Other less fortunate survivors suffered impairment of their breathing apparatus and had to be placed in an iron lung.

Caused by viruses (there are three main viral strains), polio spreads from one person to another by a fecal-oral route and in the East Coast of the United States was very often contracted by middle-class young people who had access to public swimming pools. Polio was a high-profile diseaseits victims included President Franklin Delano Roosevelt. Accordingly, it attracted the attention of highly qualified American scientists. In the development of a preventive vaccine suitable for mass distribution, the first great breakthrough was by Dr. Jonas Salk in the 1950s. In most areas of the world, Salk's techniques, which were based on the use of an injection, have now been replaced by an orally administered vaccine by Dr. Albert Sabin that was released in 1961.

Thanks to preventive immunization, polio has all but disappeared in the United States and elsewhere in the West. Yet in India, Nigeria, and some other parts of the non-West, young children and infants over the age of six months are still at risk from the disease. As of 1998, more than 18,000 fatalities were reported. Given that the quality of hospital care found in most non-Western countries is far below the standard found even half a century ago in the United States, cases that in the United States might have been successfully treated are left all but unattended and commonly result in death.

AIDS

Human Immunodeficiency Virus (HIV) and Acquired Immuno-Deficiency Syndrome (AIDS) was first reported in 1981 and has become the world's fourth most common cause of death. As of 2002, 40 million people bore the lethal virus, 70 percent of them in sub-Saharan Africa.

According to the conventional wisdom of leading funding agencies as expressed by the World Health Organization (WHO), "99 percent of the HIV infections found in Africa in 2001 are attributable to unsafe sex." (WHO 2002, p. xv). However, four years earlier, the same organization admitted that half a million victims were under the age of fifteen (WHO 1998, p. 93).

An alternative assessment of the situation was found in the International Journal of STDs and AIDS in October 2002. Here, David Gisselquist and his colleagues found that a sizeable percentage of Africans suffering from HIV had not yet reached the age of puberty. Though none of these children had engaged in sexual activity involving a partner, all of them had been the recipients of clinically administered injections which were intended to prevent communicable diseases, fevers, or other childhood illnesses. On-site study showed that the cash-strapped clinics often reused syringes simply because no other instruments were available; more than half of all HIV and AIDS victims in Africa may have been infected in this way. In many cases, newborn infants may have been infected in utero by infected mothers who had made use of the disease-prevention services of clinics.

The current AIDS epidemic affects infants and young children under the age of fifteen in financially hard-pressed sub-Saharan regions in two ways. First, many of them will die of pneumonia and the other killers that strike down people whose immune systems have been rendered useless. Very often their deaths will be recorded as having been caused by something other than AIDS.

Second, and more difficult to capture statistically, millions of young Africans are becoming orphans through the AIDS deaths of their parents, aunts and uncles, and other potential care-givers. In several countries in southern Africa, where nearly half the adult population is HIV-positive, orphans have little chance of survival. For this reason, many of these who do survive do not acquire the veneer of civilization and instead become teenaged mercenary soldiers, drug-dealers, extortionists, or all-purpose terrorists.

As of 2003, the AIDS epidemic continues, and in the next two or three years is expected to make its presence heavily felt in China and in India, nations which between them are the home of half the world's population. Because many non-Western countries are burdened with debt repayment to financial institutions based in the West and are thus unable to fully fund proper health services, the AIDS epidemic may well become the non-Western world's principal childhood killer. The prognosis is not good.

See also: AIDS; Contagious Diseases; Infant Mortality.

bibliography

Cohn, Samuel K., Jr. 2002. "The Black Death: End of a Paradigm." American Historical Review 107, no. 2: 70338.

De Waal, Alex. 2003. "How Will HIV/AIDS Transform African Governance?" African Affairs 102: 123.

Gisselquist, David, Richard Rothenberg, John Potterat, et al. 2002. "HIV Infections in Sub-Saharan Africa Not Explained by Sexual or Vertical Transmission." International Journal of STDS and AIDS 13, no. 10: 657666.

Gisselquist, David, John Potterat, Paul Epstein, et al. 2002. "AIDS in Africa." The Lancet 360, no. 9343L: 14221423.

Gould, Tony. 1995. A Summer Plague: Polio and Its Survivors. New Haven: Yale University Press.

Joralemon, Donald. 1982. "New World Depopulation and the Case of Disease." Journal of Anthropological Research 38, no. 1:108127.

Lovell, W. George. 1992. "'Heavy Shadow and Black Night': Disease and Depopulation in Colonial Spanish America." Annals ofthe Association of American Geographers 82, no. 3: 426446.

Mercer, Alex. 1990. Disease, Mortality, and Population in Transition: Epidemiological-Demographic Change in England since the Eighteenth Century as Part of a Global Phenomenon. Leicester, UK: Leicester University Press.

Watts, Sheldon. 1997. Epidemics and History: Disease, Power, and Imperialism. London: Yale University Press.

World Health Organization. 1998. World Health Report 1998. Geneva: World Health Organization.

World Health Organization. 2002. World Health Report 2002. Geneva: World Health Organization.

Sheldon Watts

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Epidemics." Encyclopedia of Children and Childhood in History and Society. . Encyclopedia.com. 20 Aug. 2017 <http://www.encyclopedia.com>.

"Epidemics." Encyclopedia of Children and Childhood in History and Society. . Encyclopedia.com. (August 20, 2017). http://www.encyclopedia.com/children/encyclopedias-almanacs-transcripts-and-maps/epidemics

"Epidemics." Encyclopedia of Children and Childhood in History and Society. . Retrieved August 20, 2017 from Encyclopedia.com: http://www.encyclopedia.com/children/encyclopedias-almanacs-transcripts-and-maps/epidemics

Epidemics

EPIDEMICS

An epidemic is an occurrence of cases of a disease in excess of usual expectations for a particular population. An outbreak of influenza that affects thousands of people in a month in a nation and a half dozen cases of a rare form of liver cancer affecting industrial workers in a chemical plant over a period of several years are both examples of epidemics. Another kind of epidemic can be seen in the sharp rise in the prevalence of cigarette smoking throughout the twentieth centuryfirst among males and then femalesand of smoking-related respiratory system cancers. The surging death rate from coronary heart disease among men in many industrial nations in the middle third of the twentieth century may also be described as an epidemic.

A pandemic is a worldwide epidemic that kills or incapacitates huge numbers in many countries. Outbreaks of influenza in 1919 and HIV/AIDS (human immunodeficiency virus/acquired immunodeficiency syndrome) since the 1980s are both examples of pandemics. Conditions that are constantly present in a community are called "endemic;" examples include malaria in some tropical regions, and goiter due to deficiency of iodine in the soil of certain areas.

A single case of a rare and dangerous contagious disease that has never occurred before or has long been absent from a community represents a potential epidemic, as does a small cluster of cases of a disease such as typhoid in an urban community with good sanitation. Infectious pathogens (bacteria and viruses) cause most epidemics, while some are caused by a toxic industrial process or a toxic substance in food or water. A toxin in cooking oil in Spain in 1981 poisoned several thousand people, damaging their kidneys, liver, lungs, and nervous system and causing many deaths and widespread chronic disability. The precise nature of this contaminant was never established. In 1976, members of the American Legion who had attended a convention in Philadelphia began to fall ill and die of an unusual form of pneumonia, mostly after they returned to their homes elsewhere in the United States. Investigations by the Centers for Disease Control revealed this to be an epidemic of what is now called Legionnaire's disease, which is caused by a previously unknown microorganism that can be disseminated via the moist air in poorly maintained air-conditioning systems.

Charles Mackay, in his classic work Extraordinary Popular Delusions and the Madness of Crowds, described what is known as a behavioral epidemic. This phenomenon can be seen in the reactions of impressionable teenagers at a rock concertand in a more sinister form in movements such as Nazism, when an entire nation is gripped by destructive fanaticism. The huge increase in traffic-related death and injury rates during the twentieth century, which has continued into the twenty-first century, is a behavioral epidemic associated with addiction to high-speed automobiles (the phenomenon called "road rage" is a psychopathic variation of this epidemic).

Human history has been punctuated frequently by epidemics, and occasionally by pandemics, that have shaped the rise and fall of civilizations and the victories and defeats of warring armies. The outcome of the Peloponnesian War (431404 b.c.e.) between Athens and Spartaand the future course of Western civilizationmight have been very different had it not been for the epidemic that decimated the Athenians at the beginning of the war. Although the historian Thucydides, who had the disease himself, described its symptoms and signs in detail, modern epidemiologists cannot identify it.

Epidemic sweating sickness recurred several times in medieval Europe, but it has vanished since. The Black Death, or plague, that struck Europe in 1347 killed between one-third and one-half of the people in many cities and towns, arresting the advance of civilization for several generations. Some epidemic diseases, such as the plague, smallpox, typhus, and influenza, have persisted throughout recorded history. Smallpox was eradicated worldwide by 1980. Cholera appeared along the world's major trade routes in several devastating epidemics beginning in the eighteenth century, and it still causes massive epidemics, most recently in South America in early 1990s.

In the final quarter of the twentieth century over thirty new infectious pathogens were identified. Many of these have caused deadly localized epidemics (e.g. Ebola virus, hantavirus, and other viral hemorrhagic fevers), and some have spread worldwideHIV/AIDS being the foremost among these. Since its first recognition in 1981, HIV has affected almost 40 million people and killed over 10 million, making it the most lethal and dangerous pandemic since the Black Death. Other new and emerging infections that have caused epidemics include Legionnaire's disease, Lyme disease, newly identified hepatitis viruses spread in epidemic form through contaminated blood and blood products used in transfusion services, and several bacterial and viral diseases affecting the gastrointestinal tract.

An epidemic is a public health emergency requiring immediate investigation. The steps in investigating an epidemic are as follows:

  1. Confirm the diagnosis.
  2. Verify that the number of cases is outside normal expectations.
  3. Define features in common among the cases (including inapparent cases).
  4. Distinguish cases from members of the community who are not affected.
  5. Compare the exposure history of the cases with a sample of noncases.
  6. Conduct appropriate laboratory tests for pathogenic organisms.
  7. Review environment and social conditions.
  8. Arrange, classify, and analyze the data.
  9. Plot graphs of time trends and the number of cases; create maps of the distribution of cases.
  10. Report findings to the public health authorities for action to control the epidemic.

In the investigation it is important to consider the host (the affected individuals), the agent (the cause of the condition), and the environment. Physical, biological, social, behavioral, and cultural factors must also be considered. Investigating an epidemic can be as exciting as detective fiction, and such investigations (both real and fictional) have yielded many best-selling books and movies. The Epidemic Intelligence Service (EIS) of the U.S. Centers for Disease Control and Prevention has an illustrious record of successfully investigating and controlling epidemics, including some great public health importance. The first investigations of HIV/AIDS were done mainly by EIS staff and close collaborators in New York and Los Angeles.

Several kinds of epidemics can be distinguished. A point-source epidemic is one in which a group of people all fall ill as a result of a single exposure, typically to an agent in food they have all consumed. An example would be an outbreak of acute food poisoning due to staphylococcal enterotoxin. A common-vehicle epidemic is due to an agent that is spread on an ongoing basis in a "vehicle" such as food, water, or air. Food-borne common-vehicle epidemics usually cause gastrointestinal disease, and are sometimes perpetuated by a carrier who is a foodhandler. Waterborne epidemics include typhoid, giardia, viral hepatitis A, and many others. The best known airborne common vehicle epidemic is Legionnaire's disease. Notorious blood-borne common-vehicle epidemics have occurred since the 1980s in many countries after the blood supply became infected with HIV or Hepatitis C virus. Vector-borne epidemics are spread by insect vectors and include viruses such as dengue and viral encephalitis, which are transmitted by mosquitoes.

Control and prevention of an epidemic requires elimination of the source, or, if this is not feasible, precautions to prevent transmissions from the source to susceptible human hosts. The same approach applies when the agent causing the epidemic is not an infectious pathogen but a chemical poison or an allergen; and it can even be applied, with suitable adjustments, to control of behavioral epidemics like mass hysteria and schoolyard vandalism.

Viewed from the perspective of evolutionary biology, epidemics will forever be a part of human-kind's experience. The interaction of human hosts with infectious pathogenic organisms is everchanging, in complex ecosystems that are also ever-changing, often as a result of human activity.

John M. Last

(see also: Adherence or Compliance Behavior; Black Death; Blood-Borne Diseases; Centers for Disease Control and Prevention; Classification of Disease; Common Vehicle Spread; Communicable Disease Control; Contagion; Emerging Infectious Diseases; Epidemic Intelligence Service; Epidemiologic Surveillance; Epidemic Theory: Herd Immunity; Epidemiology; Food-Borne Diseases; HIV/AIDS; Notifiable Diseases; Vector-Borne Diseases; Waterborne Diseases; and articles on specified diseases mentioned herein )

Bibliography

Gregg, M. B. (1996). Field Epidemiology. New York: Oxford University Press.

Mackay, C. (1841). Extraordinary Popular Delusions and the Madness of Crowds. Reprint. Boston: L. C. Page & Company, 1932.

Roueché, B. (1954). Eleven Blue Men and Other Annals of Medical Detection. Boston: Little, Brown, & Co.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"Epidemics." Encyclopedia of Public Health. . Encyclopedia.com. 20 Aug. 2017 <http://www.encyclopedia.com>.

"Epidemics." Encyclopedia of Public Health. . Encyclopedia.com. (August 20, 2017). http://www.encyclopedia.com/education/encyclopedias-almanacs-transcripts-and-maps/epidemics

"Epidemics." Encyclopedia of Public Health. . Retrieved August 20, 2017 from Encyclopedia.com: http://www.encyclopedia.com/education/encyclopedias-almanacs-transcripts-and-maps/epidemics

pandemics

pandemics infectious diseases and their causal organisms survive alongside mankind in the relationship of parasite and host, and in stable, populous societies achieve an equilibrium in which acquired immunities in the settled population mitigate the worst ravages of the infections. Pandemics, by contrast, occur when an infection escapes from its endemic habitat to reach populations without a specific acquired immunity. By definition, pandemics are distinct from epidemics: they sweep out to affect a whole country, or one or more continents, or the whole world. Epidemics may involve a much smaller community — one family; a school; or a village, town, or county. Pandemics may thus be characterized as epidemic disasters, involving disease and usually death on a massive scale.

Early pandemics

While new infectious diseases emerge from time to time as a result of human contact with normally elusive animal reservoirs of disease (Lassa fever, for example, was discovered in 1973 to have originated among rodents in Nigeria), they require special circumstances of human activity to achieve pandemic status. Human mobility — notably migration and warfare, but also exploration, travel, and trade — has played a key role in past pandemics. It is likely that pandemics have occurred periodically since the establishment of the earliest civilized, urban societies between 3000 and 500 bc, but the surviving historical records do not permit conclusive distinctions between pandemics and epidemics until late in human history. It is clear, however, that epidemic disaster struck the Roman Empire in ad 165–80, and again in ad 251–66, with an unidentifiable infection breaking out in different cities year by year, and sometimes returning. It is possible that one or both of these pandemics were due to smallpox, or even measles.

Smallpox was (the WHO declared it eradicated in 1977) a very ancient scourge related to, and possibly deriving from, one of the various animal poxes. It may have originated in India, where ancient temples still survive to Sitala, the Hindu goddess of smallpox, and where smallpox in recent times retained very much the character of an endemic disease. One attack of smallpox conferred a lifelong immunity, which permitted it eventually to establish itself as an endemic disease in the urban societies of Europe and elsewhere. It was one of the disease which, imported into the Americas by Spaniards in the fifteenth century, caused terrible devastation among the native populations, and facilitated the European conquest.

The best attested pandemics belong to relatively recent history, and to three diseases in particular: bubonic plague, cholera, and influenza. Bubonic plague, which devastated medieval and early modern Europe with successive pandemics between 1346 and the early eighteenth century, caused alarm worldwide with another pandemic between 1894 and 1900. The Black Death of 1346–50 remains the classic pandemic of popular memory.

Cholera

Since bubonic plague, cholera in the nineteenth century, and influenza in 1918, have both achieved classic pandemic status, even though their full horror has not remained in popular memory. Cholera, like smallpox, has its natural home in India, in the delta of the Ganges river. The cholera bacillus is extremely sensitive to heat and humidity, but can survive almost indefinitely where the conditions are right. In the early nineteenth century, the activities of British traders and troops in India led to its breaking out of its historic heartland in the Ganges delta, and moving beyond its established epidemic hinterland in India and neighbouring areas. Between 1817 and 1823, travelling both by land and by sea, the disease reached out through south-east Asia, China, and Japan, and through Arabia to Africa, the Persian Gulf, and southern Russia, before being cut short, perhaps by the very severe winter of 1823–4. The rapid development of trade and travel at this period ensured further pandemics of increasing geographical range.

Cholera infection is spread by food and water via the faecal–oral route, and is especially explosive when it enters a widely-distributed water supply. In the great, insanitary cities of newly industrializing Europe and America, opportunities for infection were legion. Six pandemics of cholera swept out of India between 1817 and 1923: 1817–23, 1826–37, 1846–62, 1864–75, 1883–94, and 1899–1923. The second pandemic was perhaps the most severe, with succeeding pandemics having a more variable global impact. Britain, for example, as a result of improved surveillance systems and public health reform, experienced no epidemic after 1866, while the 1866 epidemic was largely centred on London, and in particular in the water field of the East London Water Company, which had distributed contaminated supplies.

Cholera's ability to travel the nineteenth-century world was the result both of military activity and of the human and commercial interests which impelled ever-increasing numbers of people to travel or to migrate long distances. The disease regularly travelled the long-established trade-route across Russia, for example, and the 1893 epidemic at Hamburg was introduced by Russian Jews fleeing from persecution at home to a new life in the US, and who sought to travel on the regular migrant ships that sailed out of Hamburg port.

Both cholera and bubonic plague are example of diseases whose pandemic potential was eventually broken by patient observation and public health responses. Although it is likely that the cessation of plague pandemics was multicausal, the transmission routes of both diseases made them relatively susceptible to public health interventions. Infections which spread by direct contact, or the respiratory route, present a more serious challenge to human societies. The great influenza pandemic of 1918–9 illustrates the potential which such infections still have to devastate human populations.

Influenza

Influenza assumes many degrees of severity. It is caused by a notoriously unstable virus, which spreads with great speed and facility, and leaves only a brief immunity. Although it is another old disease, and although the evidence suggests some sixteen pandemics between c.1100 and 1900, on the scale of global epidemic problems it was not highly rated by public health authorities before 1918. The pandemic of 1918–9 was a very different matter: with a death toll of more than 21 million persons worldwide, it was quite simply the worst disease pandemic ever experienced by human populations — a human catastrophe equalled only by the carnage of World War II. The disease strain was a particularly virulent one, and was especially lethal to young adults in the age group 20–40, although no age group was immune. Originating in America in the spring of 1918, the disease was rapidly disseminated through Europe by American troops arriving in support of the Allied armies for the final offensive against Germany, only assuming its extreme lethal character in the autumn of that year. In the climax of local outbreaks, public services broke down entirely, medical services were unable to cope with the numbers of sick and dying, and burial services were overwhelmed by the number of bodies needing interment. Those who survived often acknowledged it as one of the most profound experiences of their lives. The American writer Katharine Anne Porter spoke for many when she said of it that ‘It just simply divided my life, cut across it like that.’

Sexually transmitted diseases

The airborne nature of influenza gave the 1918 pandemic its peculiarly immediate, universal, and devastating quality. The global pandemic of HIV infection which has spread out of the US since 1980 has less of this character and more in common with the pandemic of syphilis, which spread across Europe in the late fifteenth and sixteenth centuries, and whose initial characteristics were far more florid and alarming than those which it has subsequently manifested as an endemic disease. Both HIV and syphilis are essentially sexually-transmitted diseases, slower in manifestation and spread than airborne influenza. Nevertheless, the relatively rapid global spread of HIV as the result not only of late twentieth-century sexual mores but also of the ease and speed with which humans travel across the globe, taken together with the experience of 1918, affords some indication of the likely devastation should another lethal airborne — or easily transmitted — infectious disease acquire pandemic impetus.

Anne Hardy

Bibliography

Garrett, L. (1996). The coming plague. Newly emerging diseases in a world out of balance. Penguin Books, London.
McNeill, W. H. (1979). Plagues and peoples. Penguin Books, Harmondsworth.


See also epidemics; infectious diseases.

Cite this article
Pick a style below, and copy the text for your bibliography.

  • MLA
  • Chicago
  • APA

"pandemics." The Oxford Companion to the Body. . Encyclopedia.com. 20 Aug. 2017 <http://www.encyclopedia.com>.

"pandemics." The Oxford Companion to the Body. . Encyclopedia.com. (August 20, 2017). http://www.encyclopedia.com/medicine/encyclopedias-almanacs-transcripts-and-maps/pandemics

"pandemics." The Oxford Companion to the Body. . Retrieved August 20, 2017 from Encyclopedia.com: http://www.encyclopedia.com/medicine/encyclopedias-almanacs-transcripts-and-maps/pandemics