Protein Targeting

views updated May 18 2018

Protein Targeting

Protein targeting refers to the methods cells use to get proteins to the proper location after synthesis. Proteins play a major role in most cellular processes but must be located properly to serve their functions. Knowing how newly synthesized proteins target within cells is essential for understanding protein function.

Proteins are synthesized either in the cytosol or on the endoplasmic reticulum . When synthesized in the cytosol on free ribosomes , most proteins diffuse freely until they are bound to a particular substrate or assemble into a larger complex. Protein diffusion in the cytosol is usually rapid, so an unbound protein is capable of diffusing across the cell in only a few seconds.

One way cytosolic proteins are targeted within cells is by forming large macromolecular assemblies. Many proteins can exist either as monomers , which freely diffuse through the cytoplasm , or as polymers , which form large-scale structures that dynamically distribute to distinct locations in the cell. The cytoskeletal proteins actin and tubulin, for example, have a pair of complementary self-binding sites on their surfaces that allow them to polymerize into long helical filaments that stretch across the cell. These filaments form the cytoskeleton of the cell, which reorganizes continuously as the cell changes shape, divides, and responds to its environment.

Conformational changes in a protein often lead to changes in the protein's affinity toward a particular substrate. This process can play a crucial role in regulating the intracellular localization of a protein. An example of this type of regulation is protein phosphorylation , or addition of a phosphate group. This can dramatically change a protein's affinity for a substrate and can thereby lead to rapid changes in the protein's location. This type of regulation of protein localization is crucial for enabling cells to coordinate their activities under different growth conditions and during cell division.

Some cytoplasmic proteins are targeted to a particular site in the cell because they contain a specific amino acid sequence that causes them to bind to receptors located at that site. An example of such a targeting sequence is the so-called nuclear localization signal (NLS), which consists of two short stretches of basic amino acids divided by a 1011 amino acid spacer region. This sequence of amino acids allows a protein possessing it to bind to nuclear localization receptors found in the nucleus . Once a protein containing an NLS signal binds to a nuclear receptor it is no longer able to freely diffuse and becomes "localized" to the nucleus.

Many proteins are embedded within or associated with membranes. In eukaryotic cells , membranes form the boundaries of a variety of distinct compartments, including the nucleus, mitochondria , endoplasmic reticulum (ER), and Golgi complex. Some proteins are synthesized in the cytosol and are then modified with a lipid "anchor," and association with membranes is simply a matter of embedding in the membrane's outer lipid layer. Signaling molecules, such as the GTP-binding protein Ras, localize to membranes in this manner.


Gunther Blobel won the 1999 Nobel Prize for his work on protein targeting.


All other proteins that target to intracellular membranes require sorting signals that direct their transport from the cytosol. For example, proteins targeted to mitochondria contain a specific peptide sequence of 2080 amino acids that mediates their import. This sequence is found at the amino terminus of the protein and after import is rapidly removed by a protease.

Proteins localized within those membranes involved in endocytosis and exocytosis are first targeted to the ER, and then use membrane transport pathways to reach other compartments. Targeting of proteins to the ER begins before the polypeptide chain is completely synthesized. This is in contrast to import of proteins to mitochondria, chloroplasts, and peroxisomes, which occurs after synthesis is completed. An ER signal peptide, localized at the amino terminus of these proteins, directs the ribosome to attach to the ER membrane before the protein has been completely translated. The ER signal peptide is guided to the ER membrane by a signal-recognition particle (SRP), which binds to the signal peptide, and an SRP receptor in ER membranes.

From the ER proteins use a variety of mechanisms to reach different final destinations in the cell. Proteins destined for the nuclear envelope simply diffuse there and stick, since the nuclear envelope is in direct continuity with the ER. To reach the Golgi complex, plasma membrane, endosomes, and lysosomes, however, proteins must enter the secretory pathway and use membrane trafficking pathways. For membrane proteins, entry into the secretory pathway is thought to require their concentration and sorting at ER exit sites. In contrast, proteins that are soluble in the ER lumen (inner space) move out by a bulk flow process. After leaving the ER, most soluble proteins are eventually secreted by the cell. Many membrane proteins are directed to specific organelles within the secretory and endocytic pathways because they contain specific sorting signals in their cytoplasmic tails, which function much like zip codes. Alternatively, sorting may be due to properties of a protein's transmembrane domain, a region of the protein that gives its affinity for different lipid environments characteristic of different organelles.

see also Cell Cycle; Cytoskeleton; Endocytosis; Exocytosis; Membrane Proteins; Protein Synthesis

Jennifer Lippincott-Schwartz

Bibliography

Alberts, Bruce, et al. Molecular Biology of the Cell, 4th ed. New York: Garland Publishing, 2000.

protein targeting

views updated May 17 2018

protein targeting The process whereby a newly synthesized protein is directed to its correct location within the cell. Protein targeting is determined by short sequences of amino acids in the protein (known as signal sequences), which direct it to the correct destination; for example to a mitochondrion or (in the case of a plant cell) a chloroplast. This movement can occur either during synthesis of the protein (cotranslational) or after synthesis is complete (post-translational).